Windows Docker运行Implicit-SVSDF-Planner
Windows Docker运行GitHub - ZJU-FAST-Lab/Implicit-SVSDF-Planner: [SIGGRAPH 2024 & TOG]
1. 设置环境
我将项目git clone在D:/Github目录中。
下载ubuntu20.04 noetic镜像
docker pull osrf/ros:noetic-desktop-full-focal
启动容器,挂载主机的D:/Github文件夹为/home,并将容器初始进入的路径设为/home。
docker run -dit -v D:/Github:/home -w /home --name noetic osrf/ros:noetic-desktop-full-focal
进入容器并编译项目:
docker exec -it noetic bash
source /opt/ros/noetic/setup.bash
cd Implicit-SVSDF-Planner/
./build.sh
报错1:
root@18267cd27b32:/home/Implicit-SVSDF-Planner# ./build.sh bash: ./build.sh: /bin/bash^M: bad interpreter: No such file or directory
将win字符转译为unix
sed -i 's/\r$//' build.sh
报错2:
Compilation failed due to link of gfortran. You should refer to https://askubuntu.com/questions/276892/cannot-find-lgfortran or use ubuntu20 instead
安装包解决:
sudo apt update
sudo apt install gfortran
编译结束
2. 运行
source /opt/ros/noetic/setup.bash
cd Implicit-SVSDF-Planner/
source devel/setup.bash
export DISPLAY=host.docker.internal:0
roslaunch plan_manager run_sdTunnel.launch
使用VcXsrv可视化时出现了rviz的报错,参考以下使用MobaXterm完成运行。
win10 下 wsl2 使用 rviz 报错 Segmentation fault 段错误 (核心已转储) 的另一可能解决方案_rviz启动报错segmentation fault-CSDN博客

测试gpu但发现没有区别的运行代码:
docker run -dit -v D:/Github:/home -w /home --gpus all -e DISPLAY=host.docker.internal:0.0 -v /tmp/.X11-unix:/tmp/.X11-unix --network=host --privileged -it --name testrviz ros:noetic bash
3. 保存镜像
docker commit noetic my_new_image:latest
相关文章:
Windows Docker运行Implicit-SVSDF-Planner
Windows Docker运行GitHub - ZJU-FAST-Lab/Implicit-SVSDF-Planner: [SIGGRAPH 2024 & TOG] 1. 设置环境 我将项目git clone在D:/Github目录中。 下载ubuntu20.04 noetic镜像 docker pull osrf/ros:noetic-desktop-full-focal 启动容器,挂载主机的D:/Github文…...
ELK安装部署同步mysql数据
ELK 安装部署指南 ELK 是 Elasticsearch、Logstash 和 Kibana 的简称,用于日志收集、存储、分析和可视化。 1. 安装 Elasticsearch Elasticsearch 是一个分布式搜索和分析引擎。 1.1 下载并安装 访问 Elasticsearch 官网 下载最新版本。 解压并安装: tar…...
Vision Transformer图像分块嵌入核心技术解析:从数学推导到工业级应用
一、技术原理与数学建模 1.1 图像分块过程数学表达 给定输入图像 x ∈ R H W C x \in \mathbb{R}^{H \times W \times C} x∈RHWC,将其分割为 N N N 个尺寸为 P P P \times P PP 的图块: x p ∈ R N ( P 2 ⋅ C ) 其中 N H W P 2 x_p \in \m…...
【产品资料】陀螺匠·企业助手v1.8 产品介绍
陀螺匠企业助手是一套采用Laravel 9框架结合Swoole高性能协程服务与Vue.js前端技术栈构建的新型智慧企业管理与运营系统。该系统深度融合了客户管理、项目管理、审批流程自动化以及低代码开发平台,旨在为企业提供一站式、数字化转型的全方位解决方案,助力…...
深度求索-DeepSeek-R1本地部署指南
1、参考:部署指南 2、参考:deepseek本地部署只需三步 DeepSeek本地部署只需三步: 1、安装运行环境:安装 Ollama:Ollama官网:官网 2、下载模型:参数越大,需要物里硬件越多 3、安装部…...
代码随想录day12
144.二叉树的前序遍历 //明确递归的函数,结束边界,单层逻辑 void traversal(TreeNode* node, vector<int>& list){if(node nullptr){return;}list.push_back(node->val);traversal(node->left, list);traversal(node->right, list)…...
告别第三方云存储!用File Browser在Windows上自建云盘随时随地访问
文章目录 前言1.下载安装File Browser2.启动访问File Browser3.安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4.固定公网地址访问 前言 无论是个人用户还是企业团队,都希望能够有一个高效、安全的解决方案来…...
Ubuntu 下 nginx-1.24.0 源码分析 - NGX_MAX_ALLOC_FROM_POOL
NGX_MAX_ALLOC_FROM_POOL 定义在 src\core\ngx_palloc.h #define NGX_MAX_ALLOC_FROM_POOL (ngx_pagesize - 1) 在 src/os/unix/ngx_alloc.h extern ngx_uint_t ngx_pagesize; 这个全局变量定义在 src\os\unix\ngx_alloc.c 中 ngx_uint_t ngx_pagesize; 在 src/os/unix/ngx_…...
PyQt6/PySide6 的 SQL 数据库操作(QtSql)
一、核心组件架构 1.1 QtSql模块构成 QSqlDatabase:数据库连接管理(支持连接池)QSqlQuery:SQL语句执行与结果遍历QSqlTableModel:可编辑的表格数据模型QSqlQueryModel:只读查询结果模型QSqlRelationalTab…...
利用IDEA将Java.class文件反编译为Java文件:原理、实践与深度解析
文章目录 引言:当.class文件遇到源代码缺失第一章:反编译技术基础认知1.1 Java编译执行原理1.2 反编译的本质1.3 法律与道德边界 第二章:IDEA内置反编译工具详解2.1 环境准备2.2 三步完成基础反编译2.3 高级反编译技巧2.3.1 调试模式反编译2.…...
Kafka偏移量管理全攻略:从基础概念到高级操作实战
#作者:猎人 文章目录 前言:概念剖析kafka的两种位移消费位移消息的位移位移的提交自动提交手动提交 1、使用--to-earliest重置消费组消费指定topic进度2、使用--to-offset重置消费offset3、使用--to-datetime策略指定时间重置offset4、使用--to-current…...
【R语言】GitHub Copilot安装-待解决
参考: 文章目录...
软件定义汽车时代的功能安全和信息安全
我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 简单,单纯,喜欢独处,独来独往,不易合同频过着接地气的生活…...
qt的QSizePolicy的使用
使用 QSizePolicy 设置控件的伸缩因子 在 Qt 中,QSizePolicy 控制 控件如何在布局中伸缩。如果想要影响控件的大小调整行为,可以通过 QSizePolicy::setHorizontalStretch() 和 QSizePolicy::setVerticalStretch() 设置伸缩因子。 基本用法 假设我们有一个…...
简单几个步骤完成 Oracle 到金仓数据库(KingbaseES)的迁移目标
作为国产数据库的领军选手,金仓数据库(KingbaseES)凭借其成熟的技术架构和广泛的市场覆盖,在国内众多领域中扮演着至关重要的角色。无论是国家电网、金融行业,还是铁路、医疗等关键领域,金仓数据库都以其卓…...
DeepSeek自动化写作软件
DeepSeek写作软件的三大核心功能 对于内容创作者来说,写作不仅是表达思想的过程,更是一项需要投入大量时间和精力的任务。面对日益增长的内容需求,写作效率低下、内容质量不高等问题,常常让创作者感到焦虑。而 DeepSeek 写作软件…...
【kafka系列】Kafka如何实现高吞吐量?
目录 1. 生产者端优化 核心机制: 关键参数: 2. Broker端优化 核心机制: 关键源码逻辑: 3. 消费者端优化 核心机制: 关键参数: 全链路优化流程 吞吐量瓶颈与调优 总结 Kafka的高吞吐能力源于其生…...
learn_pytorch03
第三章 深度学习分为如下几个步骤 1:数据预处理,划分训练集和测试集 2:选择模型,设定损失函数和优化函数 3:用模型取拟合训练数据,并在验证计算模型上表现。 接着学习了一些数据读入 模型构建 损失函数的构…...
机器学习:k近邻
所有代码和文档均在golitter/Decoding-ML-Top10: 使用 Python 优雅地实现机器学习十大经典算法。 (github.com),欢迎查看。 K 邻近算法(K-Nearest Neighbors,简称 KNN)是一种经典的机器学习算法,主要用于分类和回归任务…...
redis之lua实现原理
文章目录 创建并修改Lua环境Lua环境协作组件伪客户端lua scripts字典 EVAL命令的实现定义脚本函数执行脚本函数 EVALSHA命令的实现脚本管理命令的实现SCRIPT FLUSHSCRIPTEXISTSSCRIPT LOADSCRIPT KILL 脚本复制复制 EVAL命令、SCRIPT FLUSH命令和SCRIPT LOAD命令* 复制EVALSHA命…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
python/java环境配置
环境变量放一起 python: 1.首先下载Python Python下载地址:Download Python | Python.org downloads ---windows -- 64 2.安装Python 下面两个,然后自定义,全选 可以把前4个选上 3.环境配置 1)搜高级系统设置 2…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
tree 树组件大数据卡顿问题优化
问题背景 项目中有用到树组件用来做文件目录,但是由于这个树组件的节点越来越多,导致页面在滚动这个树组件的时候浏览器就很容易卡死。这种问题基本上都是因为dom节点太多,导致的浏览器卡顿,这里很明显就需要用到虚拟列表的技术&…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
