当前位置: 首页 > news >正文

蓝桥杯班级活动

题目描述

        小明的老师准备组织一次班级活动。班上一共有 n 名 (n 为偶数) 同学,老师想把所有的同学进行分组,每两名同学一组。为了公平,老师给每名同学随机分配了一个 n 以内的正整数作为 id,第 i 名同学的 id 为 ai。

老师希望通过更改若干名同学的 id 使得对于任意一名同学 i,有且仅有另一名同学 j 的 id 与其相同 (ai=aj​)。请问老师最少需要更改多少名同学的 id?

输入格式

输入共 2行。第一行为一个正整数 n。第二行为 nn 个由空格隔开的整数 a1,a2,...,ana1​,a2​,...,an​。

输出格式

输出共 1 行,一个整数。

输入样例: 
4
1 2 2 3
输出样例:
1

 思路:

题目要求有且仅有两个数相同,因此,我们要分别记录只出现一次的数和出现超过两次的数,如果只有出现一次的数,且其个数为c1,那么需要修改c1/2;如果只有出现超过两次的数,且其个数为c2,那么修改次数为c2,显然可以发现,修改只出现一次的数会更简单;那么如果c1,c2同时存在时,当c2>=c1,则要修改c1+(c2-c1)=c2次,反之,则要修改c2+(c1-c2)/2次

#include<bits/stdc++.h>
using namespace std;
#define int long long 
const int N = 1e6;
int n,C=0,c1=0,c2=0;
int c[N],a[N];
bool v[N];
signed main()
{ios::sync_with_stdio(0),cin.tie(0),cout.tie(0);cin>>n;for(int i=0;i<n;i++){cin>>a[i];c[a[i]]++;}for(int i=0;i<n;i++){if(c[a[i]]>2&&!v[a[i]]){c2+=c[a[i]]-2;v[c2]=true;}if(c[a[i]]==1) c1++;}if(c1>=c2) C=c2+(c1-c2)/2;if(c2>c1) C=c2;cout<<C<<endl;return 0;} 

细节:为了避免重复计算,所以当一个数出现次数大于等于两次时需要做标记。 

相关文章:

蓝桥杯班级活动

题目描述 小明的老师准备组织一次班级活动。班上一共有 n 名 (n 为偶数) 同学&#xff0c;老师想把所有的同学进行分组&#xff0c;每两名同学一组。为了公平&#xff0c;老师给每名同学随机分配了一个 n 以内的正整数作为 id&#xff0c;第 i 名同学的 id 为 ai。 老师希望通…...

PHP支付宝--转账到支付宝账户

官方参考文档&#xff1a; ​https://opendocs.alipay.com/open/62987723_alipay.fund.trans.uni.transfer?sceneca56bca529e64125a2786703c6192d41&pathHash66064890​ 可以使用默认应用&#xff0c;也可以自建新应用&#xff0c;此处以默认应用来讲解【默认应用默认支持…...

2.18寒假

今天在题单中看了搜索。 解析&#xff1a;两个一维数组&#xff0c;用于表示上下左右四个方向的偏移量&#xff0c;分别对应 x 轴和 y 轴的偏移&#xff0c;遍历四个方向&#xff08;左、右、下、上&#xff09;&#xff0c;对于每个方向&#xff0c;检查目标位置是否未走过&am…...

Docker 与持续集成 / 持续部署(CI/CD)的集成(二)

五、代码示例与解释 &#xff08;一&#xff09;Dockerfile 示例 以下是一个简单的基于 Python Flask 应用的 Dockerfile 示例&#xff1a; # 使用Python 3.10-slim作为基础镜像 FROM python:3.10-slim # 设置工作目录 WORKDIR /app # 复制项目文件到容器内的工作目录 C…...

SQL Server的安装和简单使用

目录 一、SQL Server 1.1、简介 1.2、安装包 二、安装SQL Server 2.1、双击安装包 2.2、选择自己想要安装的位置 2.3、点击安装 2.4、安装完成之后会出现以下页面&#xff0c;按照序号依次点击 2.5、不用管密钥&#xff0c;点击下一步 2.6、选择【我接受】 2.7、是否…...

c/c++蓝桥杯经典编程题100道(19)汉诺塔问题

汉诺塔问题 ->返回c/c蓝桥杯经典编程题100道-目录 目录 汉诺塔问题 一、题型解释 二、例题问题描述 三、C语言实现 解法1&#xff1a;递归法&#xff08;难度★&#xff09; 解法2&#xff1a;迭代法&#xff08;难度★★★&#xff09; 四、C实现 解法1&#xff1…...

Linux 信号量

Linux 信号量 一、信号量基础概念1.1 同步机制的核心需求1.2 信号量的核心原理1.3 信号量类型对比 二、实战代码解析2.1 共享内存与信号量结合示例2.2 信号量类实现要点 三、关键实现细节分析3.1 初始化三步骤3.2 SEM_UNDO机制3.3 原子操作保证 四、进阶应用场景4.1 生产者-消费…...

Qt开发①Qt的概念+发展+优点+应用+使用

目录 1. Qt的概念和发展 1.1 Qt的概念 1.2 Qt 的发展史&#xff1a; 1.3 Qt 的版本 2. Qt 的优点和应用 2.1 Qt 的优点&#xff1a; 2.2 Qt 的应用场景 2.3 Qt 的应用案例 3. 搭建 Qt 开发环境 3.1 Qt 的开发工具 3.2 Qt SDK 的下载和安装 3.3 Qt 环境变量配置和使…...

向量库(Vector Database)

向量库 1. 向量库发展史 早期阶段&#xff08;2000s&#xff09; 基于关系型数据库的扩展&#xff08;如 PostgreSQL 的向量插件&#xff09;。简单相似度计算&#xff08;如欧氏距离、余弦相似度&#xff09;。 专用向量库的兴起&#xff08;2010s&#xff09; FAISS&#xf…...

torchsparse安装过程的问题

1、项目要求torchsparse githttps://github.com/mit-han-lab/torchsparse.gitv1.4.0 2、torch1.8.1cu111 nvcc--version&#xff1a;11.1 这个版本的cuda匹配的gcc、g经常是7.5。设置为7.5. &#xff08;这个gcc、g版本修改不一定&#xff0c;可以先进行后面的&#xff0c…...

【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》

大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。 一、引言 在数据科学和机器学习领域,异常检测(Anomaly…...

Win10环境使用零讯ZeroNews内网穿透实现Deepseek对外服务

Win10环境使用零讯ZeroNews内网穿透实现Deepseek对外服务 前言 之前笔者已经在Win10环境搭建好了Ollama、DeepSeek、Open WebUI、Dify等组件&#xff0c;成功实现了私有化部署及内网访问&#xff1a; https://lizhiyong.blog.csdn.net/article/details/145505686 https://l…...

CUDA 安装 一直卡在Installing Nsight Visual Studio Edition

最近在安装CUDA的时候&#xff0c;CUDA 安装 一直卡在Installing Nsight Visual Studio Edition&#xff0c;莫名的一直卡在安装进行中这儿&#xff0c;过很久都没进度&#xff0c;如图 后面重新下载了12.6的进行安装也是如此 无论是local还是network&#xff0c;都是这样。度…...

Softing线上研讨会 | 自研还是购买——用于自动化产品的工业以太网

| 线上研讨会时间&#xff1a;2025年1月27日 16:00~16:30 / 23:00~23:30 基于以太网的通信在工业自动化网络中的重要性日益增加。设备制造商正面临着一大挑战——如何快速、有效且经济地将工业以太网协议集成到其产品中。其中的关键问题包括&#xff1a;是否只需集成单一的工…...

STM32 定时器产生定周期方法

目录 背景 程序 第一步、使能PCLK1外设时钟​编辑 第二步、时基单元配置 第三步、配置NVIC&#xff08;设置定时中断优先级&#xff09;​编辑 第四步、使能溢出中断 第五步、使能定时器 第六步、填写中断处理函数&#xff08;ISR&#xff09; 背景 在单片机开发当中&…...

解锁机器学习核心算法 | 支持向量机:机器学习中的分类利刃

一、引言 在机器学习的庞大算法体系中&#xff0c;有十种算法被广泛认为是最具代表性和实用性的&#xff0c;它们犹如机器学习领域的 “十大神器”&#xff0c;各自发挥着独特的作用。这十大算法包括线性回归、逻辑回归、决策树、随机森林、K - 近邻算法、K - 平均算法、支持向…...

青少年编程与数学 02-009 Django 5 Web 编程 21课题、部署

青少年编程与数学 02-009 Django 5 Web 编程 21课题、部署 一、软件开发部署部署的主要内容部署的步骤部署的方式部署的环境 二、Django项目部署1. 准备工作2. 代码部署3. 配置Django项目4. Web服务器和应用服务器配置5. 安全和性能优化6. 监控和日志管理7. 测试和上线 三、在U…...

ARM系统源码编译OpenCV 4.10.0(包含opencv_contrib)

因项目部署在ARM系统上&#xff0c;需要编译一个arm版本的opencv-4.10.0&#xff08;带opencv_contrib&#xff09;版本。 若需要Linux系统下源码安装OpenCV&#xff0c;可参考&#xff1a;https://blog.csdn.net/qq_45445740/article/details/142770493?spm1001.2014.3001.55…...

cmake:定位Qt的ui文件

如题。在工程中&#xff0c;将h&#xff0c;cpp&#xff0c;ui文件放置到不同文件夹下&#xff0c;会存在cmake找不到ui文件&#xff0c;导致编译报错情况。 cmake通过指定文件路径&#xff0c;确保工程找到ui文件。 标识1&#xff1a;ui文件保存路径。 标识2&#xff1a;添加…...

(leetcode 1749 前缀和)1749. 任意子数组和的绝对值的最大值

核心题意 任意子数组和 的绝对值的最大值实际上是前缀和之间的差的最大值 建立前缀和数组 如果我们只考虑前缀和的最大值和最小值之差&#xff0c;那么就能够获得一个最大的子数组和的绝对值。因为任意一个子数组的和 prefix[j1] - prefix[i]&#xff0c;它的绝对值是最大当…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

【入坑系列】TiDB 强制索引在不同库下不生效问题

文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)

0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述&#xff0c;后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作&#xff0c;其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

三分算法与DeepSeek辅助证明是单峰函数

前置 单峰函数有唯一的最大值&#xff0c;最大值左侧的数值严格单调递增&#xff0c;最大值右侧的数值严格单调递减。 单谷函数有唯一的最小值&#xff0c;最小值左侧的数值严格单调递减&#xff0c;最小值右侧的数值严格单调递增。 三分的本质 三分和二分一样都是通过不断缩…...

Git常用命令完全指南:从入门到精通

Git常用命令完全指南&#xff1a;从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...

【 java 虚拟机知识 第一篇 】

目录 1.内存模型 1.1.JVM内存模型的介绍 1.2.堆和栈的区别 1.3.栈的存储细节 1.4.堆的部分 1.5.程序计数器的作用 1.6.方法区的内容 1.7.字符串池 1.8.引用类型 1.9.内存泄漏与内存溢出 1.10.会出现内存溢出的结构 1.内存模型 1.1.JVM内存模型的介绍 内存模型主要分…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving

地址&#xff1a;LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂&#xff0c;正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...