【深度学习】预训练和微调概述
预训练和微调概述
- 1. 预训练和微调的介绍
- 1.1 预训练(Pretraining)
- 1.2 微调(Fine-Tuning)
- 2. 预训练和微调的区别
预训练和微调是现代深度学习模型训练中的两个关键步骤,它们通常是一个 预训练-微调 (Pretrain-Finetune) 流程的不同阶段。两者相辅相成,共同帮助模型从通用的知识到特定任务的适应。
1. 预训练和微调的介绍
1.1 预训练(Pretraining)
定义:
预训练是指在 大规模、无标注数据 上对模型进行训练,让模型学会一些通用的特征或模式。这个阶段的目标是让模型具备基础的能力和知识,通常不涉及具体的任务。预训练之后,模型可以用作多个不同任务的基础,进一步通过微调来适应特定的应用场景。
目标:
- 让模型学习通用的特征和表示。
- 在大规模数据集上捕获输入数据的底层模式、结构或规律。
- 为后续的任务适应和优化提供一个好的起点。
方法:
- 无监督学习或自监督学习:预训练时使用的数据通常没有标注,模型的学习方式可能是无监督的(例如,语言模型学习词与词之间的关系),或者自监督的(例如,BERT 的掩码任务,模型通过预测缺失的词来学习语境)。
例子:
- GPT:在大规模文本上训练模型,让其学习词语的上下文和语言规律。这个阶段使用的是自回归训练任务,模型学会如何根据前面的词预测下一个词。
- BERT:BERT 使用掩码语言模型(MLM)和下一句预测(NSP)任务,在大量文本数据上进行预训练,学习语言的上下文信息和句子之间的关系。
1.2 微调(Fine-Tuning)
定义:
微调是指在 预训练模型 的基础上,通过 小规模、标注数据 对模型进行进一步训练。这个过程让模型在某个特定任务上进行优化,使其能更好地适应该任务的要求。
目标:
- 将预训练模型的能力转移到一个特定任务上,优化模型以适应该任务。
- 微调的目标是让模型对某个具体的任务(如情感分析、机器翻译、图像分类等)产生更好的表现。
方法:
- 监督学习:微调通常是通过有标签的数据进行的监督学习。例如,对于情感分析任务,模型的输入是文本,输出是对应的情感标签(如“积极”或“消极”)。
- 调整模型参数:微调时,模型通常会继续训练一段时间,更新部分或全部参数。这通常需要较少的数据和较短的时间,因为模型已经在预训练阶段获得了大量的通用特征。
- 任务特定:微调任务是针对特定应用或领域的,通常通过目标任务的数据集来进行优化。
例子:
- BERT 微调:在预训练阶段,BERT 学会了词汇的上下文关系。然后,BERT 在情感分析、命名实体识别(NER)、问答等任务上进行微调,使得模型在这些任务上有更好的表现。
- ResNet 微调:在预训练阶段,ResNet 学会了从图像中提取通用的视觉特征(如边缘、形状、纹理等)。在微调阶段,可以用具体的图像数据集(例如猫狗分类)进行训练,以优化模型在该任务上的表现。
2. 预训练和微调的区别
| 特性 | 预训练 | 微调 |
|---|---|---|
| 目标 | 学习通用特征和模式,训练一个能够迁移到多个任务的模型 | 让模型适应特定任务,优化特定任务的性能 |
| 数据 | 使用大规模无标注数据 | 使用特定任务的标注数据 |
| 任务类型 | 通常是通用的、无监督的任务,例如语言建模、掩码任务等 | 针对特定任务的监督学习,例如分类、回归、生成任务等 |
| 计算资源 | 需要大量的计算资源和时间,通常在大规模数据集上训练 | 微调需要的计算资源较少,因为微调的是预训练模型的部分参数 |
| 训练阶段 | 训练模型的基础能力,通常在预训练阶段不会涉及特定任务 | 在预训练后,针对特定任务进一步优化 |
| 结果 | 学到的是模型的通用表示和特征,能够用于多个任务 | 适应了具体任务,使模型能够在该任务上表现得更好 |
相关文章:
【深度学习】预训练和微调概述
预训练和微调概述 1. 预训练和微调的介绍1.1 预训练(Pretraining)1.2 微调(Fine-Tuning) 2. 预训练和微调的区别 预训练和微调是现代深度学习模型训练中的两个关键步骤,它们通常是一个 预训练-微调 (Pretrain-Finetune…...
自动化测试框架搭建-单次接口执行-三部曲
目的 判断接口返回值和提前设置的预期是否一致,从而判断本次测试是否通过 代码步骤设计 第一步:前端调用后端已经写好的POST接口,并传递参数 第二步:后端接收到参数,组装并请求指定接口,保存返回 第三…...
【阮一峰】2.数组
数组 简介 所有成员的类型必须相同,但是成员数量是不确定的。 由于成员数量可以动态变化,所以 TypeScript 不会对数组边界进行检查,越界访问数组并不会报错。 第一种写法: let arr: (number | string)[];第二种写法ÿ…...
DeepSeek 接入PyCharm实现AI编程!(支持本地部署DeepSeek及官方DeepSeek接入)
前言 在当今数字化时代,AI编程助手已成为提升开发效率的利器。DeepSeek作为一款强大的AI模型,凭借其出色的性能和开源免费的优势,成为许多开发者的首选。今天,就让我们一起探索如何将DeepSeek接入PyCharm,实现高效、智…...
【Java Card】Applet 使用Shareable进行数据分享以及部分问题处理
文章目录 前言一、定义接口二、server端实现三、client端实现四、遇到的问题 前言 在进行开发时,可能会将业务放到不同的applet中,这时常常会需要进行数据的分享。 比如在一个applet中存储了密钥,而在另一个业务applet中需要进行签名时&…...
国产FPGA开发板选择
FPGA开发板是学习和开发FPGA的重要工具,选择合适的开发板对学习效果和开发效率至关重要。随着国产FPGA的发展,淘宝上的许多FPGA开发板店铺也开始进行国产FPGA的设计和销售,本文将对国产FPGA和相关店铺做个简单梳理,帮助有需要使用…...
com.typesafe.config
com.typesafe.config 是 Typesafe Config 库的核心包,主要用于 统一、灵活地管理应用程序配置,支持从多种格式(如 HOCON、JSON、Java Properties)加载配置,并提供类型安全的访问接口。以下是其核心功能的详细解析&…...
Ubuntu学习备忘
1. 打开Terminal快捷键 ctrl alt t 2.Ubuntu22.04的root没有默认初始密码, 为root设置密码,下面链接的step1, How to allow GUI root login on Ubuntu 22.04 Jammy Jellyfish Linux - LinuxConfig...
【C++】— 掌握STL vector 类:“Vector简介:动态数组的高效应用”
文章目录 1.vector的介绍和使用1.1vector的介绍1.2 vector的特点1.3vector的使用1.3.1vector的定义1.3.2vector iterator的使用1.3.3vector 的空间增长问题1.3.4 vector 的增删查改1.3.5vector 迭代器失效问题 1.vector的介绍和使用 1.1vector的介绍 vector是一个顺序容器&am…...
Docker__持续更新......
Docker 1. 基本知识1.1 为什么有Docker?1.2 Docker架构与容器化 画图解释 画图解释2. 项目实战 1. 基本知识 1.1 为什么有Docker? 用一行命令跨平台安装项目,在不同平台上运行项目。把项目打包分享运行应用。 1.2 Docker架构与容器化 准备机器,在机…...
【R语言】主成分分析与因子分析
一、主成分分析 主成分分析(Principal Component Analysis, PCA)是一种常用的无监督数据降维技术,广泛应用于统计学、数据科学和机器学习等领域。它通过正交化线性变换将(高维)原始数据投影到一个新的坐标系ÿ…...
ROS-相机话题-获取图像-颜色目标识别与定位-目标跟随-人脸检测
文章目录 相机话题获取图像颜色目标识别与定位目标跟随人脸检测 相机话题 启动仿真 roslaunch wpr_simulation wpb_stage_robocup.launch rostopic hz /kinect2/qhd/image_color_rect/camera/image_raw:原始的、未经处理的图像数据。 /camera/image_rectÿ…...
STM32 如何使用DMA和获取ADC
目录 背景 摇杆的原理 程序 端口配置 ADC 配置 DMA配置 背景 DMA是一种计算机技术,允许某些硬件子系统直接访问系统内存,而不需要中央处理器(CPU)的介入,从而减轻CPU的负担。我们可以通过DMA来从外设…...
【JAVA实战】JAVA实现Excel模板下载并填充模板下拉选项数据
背景 有这样一个场景:前端下载Excel模板,进行数据导入,这个下载模板过程需要经过后端接口去数据库查询数据进行某些列的下拉数据填充,下拉填充的数据过程中会出现错误String literals in formulas can’t be bigger than 255 cha…...
java面试笔记(一)
1. 一万个string类型的数据,设计一个算法如何按照String长度来排序 以使用 Arrays.sort() 方法,并结合一个自定义的比较器。以下是实现的示例代码: public class StringLengthSort {public static void main(String[] args) {// 定义一万个字符串的示例…...
【C++】36.C++IO流
文章目录 1. C语言的输入与输出2. 流是什么3. CIO流3.1 C标准IO流3.2 C文件IO流 4. stringstream的简单介绍 1. C语言的输入与输出 C语言中我们用到的最频繁的输入输出方式就是scanf ()与printf()。 scanf(): 从标准输入设备(键盘)读取数据,并将值存放在变量中。pri…...
Qt5开发入门指南:从零开始掌握跨平台开发
目录 Qt框架概述 开发环境搭建 基础语法与核心机制 第一个Qt窗口程序 常见问题解答 一、Qt框架概述 1.1 什么是Qt? Qt是一个1995年由挪威Trolltech公司开发的跨平台C图形用户界面应用程序框架。最新Qt5版本主要包含: GUI模块:支持Wind…...
Rook-ceph(1.92最新版)
安装前准备 #确认安装lvm2 yum install lvm2 -y #启用rbd模块 modprobe rbd cat > /etc/rc.sysinit << EOF #!/bin/bash for file in /etc/sysconfig/modules/*.modules do[ -x \$file ] && \$file done EOF cat > /etc/sysconfig/modules/rbd.modules &l…...
深度学习在蛋白质-蛋白质相互作用(PPI)领域的研究进展(2022-2025)
一、蛋白质-蛋白质相互作用(PPI)的定义与生物学意义 蛋白质-蛋白质相互作用(Protein-Protein Interaction, PPI)是指两个或多个蛋白质通过物理结合形成复合物,进而调控细胞信号传导、代谢、免疫应答等生命活动的过程。PPI是生物体内复杂功能网络的核心,例如酶与底物的结…...
网络安全学习架构 网络安全架构内容
网上买的《信息安全原理及应用》的书还没到,就找了一本《密码编码学与网络安全》的电子书,写的也不错,计划今天和明天把第一章绪论和第二章的数论给看完 1. 计算机网络安全概念 计算机安全的三个核心是:完整性(只要特…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
Cinnamon修改面板小工具图标
Cinnamon开始菜单-CSDN博客 设置模块都是做好的,比GNOME简单得多! 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
大学生职业发展与就业创业指导教学评价
这里是引用 作为软工2203/2204班的学生,我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要,而您认真负责的教学态度,让课程的每一部分都充满了实用价值。 尤其让我…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
