当前位置: 首页 > news >正文

【数据分享】1929-2024年全球站点的逐年降雪深度数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、能见度等指标,说到气象数据,最详细的气象数据是具体到气象监测站点的数据!

有关气象指标的监测站点数据,之前我们分享过1929-2024年全球气象站点的逐年平均气温数据、最高气温数据、最低气温数据、降水量数据、平均能见度数据、平均风速数据和最大持续风速数据(均可查看之前的文章获悉详情)。本次我们为大家继续带来具体到气象监测站点的数据——本次我们为大家继续带来具体到气象监测站点的数据——1929-2024年全球气象站点的逐年降雪深度数据!

原始数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),原始数据以英寸为单位,数据格式为csv,缺失数据用999.9表示。为了方便大家使用,我们对原始数据进行了一些处理,包括:①数据单位由英寸转为毫米;②处理得到了shp和excel两种数据格式;③对于excel格式,将缺失数据表示为空值,对于shp格式,缺失值依然用999.9表示;④基于当年所有天数的降雪深度通过求平均值得到降雪深度的年平均值。该数据的其他重要信息包括数据坐标为GCS_WGS_1984,以2024年为例全球有12159个气象观测站点,具体的数据处理方式会在下文详细介绍!

大家可以在公众号回复关键词 568 免费获取该数据!无需转发文章,直接获取!以下为数据的详细介绍:

01 数据预览

该数据包括shp和excel两种格式,每种格式文件里面包括1929-2024年每年的降雪深度!

数据字段包括气象观测站点的编号(STATION)气象观测站点的名称(NAME)、纬度(LATITUDE)经度(LONGITUDE)以及每年降雪深度数值(例如2024)。我们来预览一下:

接下来我们来看一下Shp格式的数据,Shp格式数据的具体属性和Excel数据相同,我们来预览一下:

2024年气象观测站点空间分布

02 数据来源

数据来源于美国国家海洋和大气管理局(NOAA)下设的国家环境信息中心(NCEI),网址为:https://www.ncei.noaa.gov/data/global-summary-of-the-day/archive/,包括了1929—2024年的气象数据,大家可以自己去该网站下载原始数据!

03 数据处理说明

1.合并处理:

从NCEI网站下载到的原始csv数据,每一个csv是某个特定站点1年内所有日期的降雪深度数据,按天记录,但并不全是365天,有的300多天,有的只有十几天。我们按照年份将每年涉及到的所有气象观测站点的每日降雪深度数据进行合并处理,最终得到以年份命名的1929-2024年全球范围气象站点的逐日降雪深度数据。

2.平均处理:

然后基于所有站点的逐日降雪深度数值,我们求得每年所有天数的日降雪深度数据的平均值,以此分别得到所有站点的逐年降雪深度数据!

3.单位换算:

原始数据单位为英寸(in),根据公式1英寸=25.4毫米,将英寸换算为毫米(mm)。

4.空值处理:

原始csv数据中的缺失值用数字999.9表示!在处理时,Excel格式文件用空值表示数据缺失;由于Shp文件会自动把空值识别为0,为区分空值与数值中的0,Shp中仍保留数字999.9表示数据缺失,特此说明!

5.站点数量说明:

每一年的站点数并不相同,基本是越新的年份全球气象站点数越多,2024年有12159个,早些年份的气象站点较少。有一点需要注意,对于缺失经纬度信息的站点,Excel中进行保留,其经纬度信息为空值。Shp中则将缺失经纬度信息的站点进行了删除。所以存在Excel和Shp中站点数量不一致的情况,例如2024年Shp中的站点个数为12121,Excel中的站点数量为12159。

03 数据获取

如有数据需求,欢迎点击下方名片链接,关注我们并咨询获取~

相关文章:

【数据分享】1929-2024年全球站点的逐年降雪深度数据(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、能见度等指标,说到气象数据,最详细的气象数据是具体到气象监测站点的数据! 有关气象指标的监测站点数据,之前我们分享过1929-2024年全球气象站…...

python爬虫系列课程1:初识爬虫

python爬虫系列课程1:初识爬虫 一、爬虫的概念二、通用爬虫和自定义爬虫的区别三、开发语言四、爬虫流程一、爬虫的概念 网络爬虫(又被称为网页蜘蛛、网络机器人)就是模拟浏览器发送网络请求,接收请求响应,一种按照一定的规则,自动抓取互联网信息的程序。原则上,只要是…...

大模型工具大比拼:SGLang、Ollama、VLLM、LLaMA.cpp 如何选择?

简介:在人工智能飞速发展的今天,大模型已经成为推动技术革新的核心力量。无论是智能客服、内容创作,还是科研辅助、代码生成,大模型的身影无处不在。然而,面对市场上琳琅满目的工具,如何挑选最适合自己的那…...

什么是语料清洗、预训练、指令微调、强化学习、内容安全; 什么是megatron,deepspeed,vllm推理加速框架

什么是语料清洗、预训练、指令微调、强化学习、内容安全 目录 什么是语料清洗、预训练、指令微调、强化学习、内容安全语料清洗预训练指令微调强化学习内容安全什么是megatron,deepspeed,vllm推理加速框架语料清洗 语料清洗是对原始文本数据进行处理的过程,旨在去除数据中的…...

HTTP的“对话”逻辑:请求与响应如何构建数据桥梁?

一、前言 作为现代互联网通信的基石,HTTP协议定义了客户端与服务器之间的“对话规则”。每一次网页加载、API调用或文件传输的背后,都离不开精心构造的HTTP请求与响应。请求中封装了用户的意图——从请求方法、资源路径到提交的数据;响应则承…...

【深度学习】预训练和微调概述

预训练和微调概述 1. 预训练和微调的介绍1.1 预训练(Pretraining)1.2 微调(Fine-Tuning) 2. 预训练和微调的区别 预训练和微调是现代深度学习模型训练中的两个关键步骤,它们通常是一个 预训练-微调 (Pretrain-Finetune…...

自动化测试框架搭建-单次接口执行-三部曲

目的 判断接口返回值和提前设置的预期是否一致,从而判断本次测试是否通过 代码步骤设计 第一步:前端调用后端已经写好的POST接口,并传递参数 第二步:后端接收到参数,组装并请求指定接口,保存返回 第三…...

【阮一峰】2.数组

数组 简介 所有成员的类型必须相同,但是成员数量是不确定的。 由于成员数量可以动态变化,所以 TypeScript 不会对数组边界进行检查,越界访问数组并不会报错。 第一种写法: let arr: (number | string)[];第二种写法&#xff…...

DeepSeek 接入PyCharm实现AI编程!(支持本地部署DeepSeek及官方DeepSeek接入)

前言 在当今数字化时代,AI编程助手已成为提升开发效率的利器。DeepSeek作为一款强大的AI模型,凭借其出色的性能和开源免费的优势,成为许多开发者的首选。今天,就让我们一起探索如何将DeepSeek接入PyCharm,实现高效、智…...

【Java Card】Applet 使用Shareable进行数据分享以及部分问题处理

文章目录 前言一、定义接口二、server端实现三、client端实现四、遇到的问题 前言 在进行开发时,可能会将业务放到不同的applet中,这时常常会需要进行数据的分享。 比如在一个applet中存储了密钥,而在另一个业务applet中需要进行签名时&…...

国产FPGA开发板选择

FPGA开发板是学习和开发FPGA的重要工具,选择合适的开发板对学习效果和开发效率至关重要。随着国产FPGA的发展,淘宝上的许多FPGA开发板店铺也开始进行国产FPGA的设计和销售,本文将对国产FPGA和相关店铺做个简单梳理,帮助有需要使用…...

com.typesafe.config

com.typesafe.config 是 Typesafe Config 库的核心包,主要用于 统一、灵活地管理应用程序配置,支持从多种格式(如 HOCON、JSON、Java Properties)加载配置,并提供类型安全的访问接口。以下是其核心功能的详细解析&…...

Ubuntu学习备忘

1. 打开Terminal快捷键 ctrl alt t 2.Ubuntu22.04的root没有默认初始密码, 为root设置密码,下面链接的step1, How to allow GUI root login on Ubuntu 22.04 Jammy Jellyfish Linux - LinuxConfig...

【C++】— 掌握STL vector 类:“Vector简介:动态数组的高效应用”

文章目录 1.vector的介绍和使用1.1vector的介绍1.2 vector的特点1.3vector的使用1.3.1vector的定义1.3.2vector iterator的使用1.3.3vector 的空间增长问题1.3.4 vector 的增删查改1.3.5vector 迭代器失效问题 1.vector的介绍和使用 1.1vector的介绍 vector是一个顺序容器&am…...

Docker__持续更新......

Docker 1. 基本知识1.1 为什么有Docker?1.2 Docker架构与容器化 画图解释 画图解释2. 项目实战 1. 基本知识 1.1 为什么有Docker? 用一行命令跨平台安装项目,在不同平台上运行项目。把项目打包分享运行应用。 1.2 Docker架构与容器化 准备机器,在机…...

【R语言】主成分分析与因子分析

一、主成分分析 主成分分析(Principal Component Analysis, PCA)是一种常用的无监督数据降维技术,广泛应用于统计学、数据科学和机器学习等领域。它通过正交化线性变换将(高维)原始数据投影到一个新的坐标系&#xff…...

ROS-相机话题-获取图像-颜色目标识别与定位-目标跟随-人脸检测

文章目录 相机话题获取图像颜色目标识别与定位目标跟随人脸检测 相机话题 启动仿真 roslaunch wpr_simulation wpb_stage_robocup.launch rostopic hz /kinect2/qhd/image_color_rect/camera/image_raw:原始的、未经处理的图像数据。 /camera/image_rect&#xff…...

STM32 如何使用DMA和获取ADC

目录 背景 ‌摇杆的原理 程序 端口配置 ADC 配置 DMA配置 背景 DMA是一种计算机技术,允许某些硬件子系统直接访问系统内存,而不需要中央处理器(CPU)的介入,从而减轻CPU的负担。我们可以通过DMA来从外设&#xf…...

【JAVA实战】JAVA实现Excel模板下载并填充模板下拉选项数据

背景 有这样一个场景:前端下载Excel模板,进行数据导入,这个下载模板过程需要经过后端接口去数据库查询数据进行某些列的下拉数据填充,下拉填充的数据过程中会出现错误String literals in formulas can’t be bigger than 255 cha…...

java面试笔记(一)

1. 一万个string类型的数据,设计一个算法如何按照String长度来排序 以使用 Arrays.sort() 方法,并结合一个自定义的比较器。以下是实现的示例代码: public class StringLengthSort {public static void main(String[] args) {// 定义一万个字符串的示例…...

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南

精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

wpf在image控件上快速显示内存图像

wpf在image控件上快速显示内存图像https://www.cnblogs.com/haodafeng/p/10431387.html 如果你在寻找能够快速在image控件刷新大图像(比如分辨率3000*3000的图像)的办法,尤其是想把内存中的裸数据(只有图像的数据,不包…...

【SpringBoot自动化部署】

SpringBoot自动化部署方法 使用Jenkins进行持续集成与部署 Jenkins是最常用的自动化部署工具之一,能够实现代码拉取、构建、测试和部署的全流程自动化。 配置Jenkins任务时,需要添加Git仓库地址和凭证,设置构建触发器(如GitHub…...

高考志愿填报管理系统---开发介绍

高考志愿填报管理系统是一款专为教育机构、学校和教师设计的学生信息管理和志愿填报辅助平台。系统基于Django框架开发,采用现代化的Web技术,为教育工作者提供高效、安全、便捷的学生管理解决方案。 ## 📋 系统概述 ### 🎯 系统定…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

大模型——基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程

基于Docker+DeepSeek+Dify :搭建企业级本地私有化知识库超详细教程 下载安装Docker Docker官网:https://www.docker.com/ 自定义Docker安装路径 Docker默认安装在C盘,大小大概2.9G,做这行最忌讳的就是安装软件全装C盘,所以我调整了下安装路径。 新建安装目录:E:\MyS…...

6.计算机网络核心知识点精要手册

计算机网络核心知识点精要手册 1.协议基础篇 网络协议三要素 语法:数据与控制信息的结构或格式,如同语言中的语法规则语义:控制信息的具体含义和响应方式,规定通信双方"说什么"同步:事件执行的顺序与时序…...

数据挖掘是什么?数据挖掘技术有哪些?

目录 一、数据挖掘是什么 二、常见的数据挖掘技术 1. 关联规则挖掘 2. 分类算法 3. 聚类分析 4. 回归分析 三、数据挖掘的应用领域 1. 商业领域 2. 医疗领域 3. 金融领域 4. 其他领域 四、数据挖掘面临的挑战和未来趋势 1. 面临的挑战 2. 未来趋势 五、总结 数据…...

基于django+vue的健身房管理系统-vue

开发语言:Python框架:djangoPython版本:python3.8数据库:mysql 5.7数据库工具:Navicat12开发软件:PyCharm 系统展示 会员信息管理 员工信息管理 会员卡类型管理 健身项目管理 会员卡管理 摘要 健身房管理…...