纯新手教程:用llama.cpp本地部署DeepSeek蒸馏模型
0. 前言
llama.cpp是一个基于纯C/C++实现的高性能大语言模型推理引擎,专为优化本地及云端部署而设计。其核心目标在于通过底层硬件加速和量化技术,实现在多样化硬件平台上的高效推理,同时保持低资源占用与易用性。
最近DeepSeek太火了,就想用llama.cpp在本地部署一下试试效果,当然在个人电脑上部署满血版那是不可能的,选个小点的蒸馏模型玩一玩就好了。
1. 编译llama.cpp
首先从Github上下载llama.cpp的源码:
git clone https://github.com/ggml-org/llama.cpp
cd llama.cpp
llama.cpp支持多种硬件平台,可根据实际的硬件配置情况选择合适的编译参数进行编译,具体可以参考文档docs/build.md。
编译CPU版本
cmake -B build
cmake --build build --config Release -j 8
编译GPU版本
编译英伟达GPU版本需要先装好驱动和CUDA,然后执行下面的命令进行编译
cmake -B build -DGGML_CUDA=ON -DGGML_CUDA_ENABLE_UNIFIED_MEMORY=1
cmake --build build --config Release -j 8
编译完成后,可执行文件和库文件被存放在
build/bin目录下。
2. 模型转换与量化
本文以DeepSeek R1的蒸馏模型DeepSeek-R1-Distill-Qwen-7B为例进行介绍。
2.1 模型下载与转换
首先从魔搭社区下载模型:
pip install modelscope
modelscope download --model deepseek-ai/DeepSeek-R1-Distill-Qwen-7B --local_dir DeepSeek-R1-Distill-Qwen-7B
下载好的模型是以HuggingFace的safetensors格式存放的,而llama.cpp使用的是GGUF格式,因此需要先要把模型转换为GGUF格式:
# 安装python依赖库
pip install -r requirements.txt
# 转换模型
python convert_hf_to_gguf.py DeepSeek-R1-Distill-Qwen-7B/
转换成功后,在该目录下会生成一个FP16精度、GGUF格式的模型文件DeepSeek-R1-Distill-Qwen-7B-F16.gguf。
2.2 模型量化
FP16精度的模型跑起来可能会有点慢,我们可以对模型进行量化以提升推理速度。
llama.cpp主要采用了分块量化(Block-wise Quantization)和K-Quantization算法来实现模型压缩与加速,其核心策略包括以下关键技术:
-
分块量化(Block-wise Quantization)
该方法将权重矩阵划分为固定大小的子块(如32或64元素为一组),每个子块独立进行量化。通过为每个子块分配独立的缩放因子(Scale)和零点(Zero Point),有效减少量化误差。例如,Q4_K_M表示每个权重用4比特存储,且子块内采用动态范围调整。 -
K-Quantization(混合精度量化)
在子块内部进一步划分更小的单元(称为“超块”),根据数值分布动态选择量化参数。例如,Q4_K_M将超块拆分为多个子单元,每个子单元使用不同位数的缩放因子(如6bit的缩放因子和4bit的量化值),通过混合精度平衡精度与压缩率。 -
重要性矩阵(Imatrix)优化
通过分析模型推理过程中各层激活值的重要性,动态调整量化策略。高重要性区域保留更高精度(如FP16),低重要性区域采用激进量化(如Q2_K),从而在整体模型性能损失可控的前提下实现高效压缩。 -
量化类型分级策略
提供Q2_K至Q8_K等多种量化级别,其中字母后缀(如_M、_S)表示优化级别:- Q4_K_M:中等优化级别,平衡推理速度与精度(常用推荐)。
- Q5_K_S:轻量化级别,侧重减少内存占用
典型场景下,
Q4_K_M相比FP16模型可减少70%内存占用,推理速度提升2-3倍,同时保持95%以上的原始模型精度。实际部署时需根据硬件资源(如GPU显存容量)和任务需求(如生成文本长度)选择量化策略。
执行下面的命令可将FP16精度的模型采用Q4_K_M的量化策略进行量化:
./build/bin/llama-quantize DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-F16.gguf DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf Q4_K_M
量化完成后,模型文件由15.2G减少到4.7G。
3. 运行模型
模型量化完后,我们就可以运行模型来试试效果了。llama.cpp提供了多种运行模型的方式:
命令行方式
执行下面的命令就可以在命令行与模型进行对话了:
./build/bin/llama-cli -m DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf -cnv

HTTP Server方式
由于模型是以Markdown格式输出内容,因此用命令行的方式看着不太方便。llama.cpp还提供HTTP Server的方式运行,交互性要好很多。
首先在终端执行命令
./build/bin/llama-server -m DeepSeek-R1-Distill-Qwen-7B/DeepSeek-R1-Distill-Qwen-7B-Q4_K_M.gguf --port 8088
然后打开浏览器,输入地址http://127.0.0.1:8088就可以在网页上与模型进行交互了,非常方便!

相关文章:
纯新手教程:用llama.cpp本地部署DeepSeek蒸馏模型
0. 前言 llama.cpp是一个基于纯C/C实现的高性能大语言模型推理引擎,专为优化本地及云端部署而设计。其核心目标在于通过底层硬件加速和量化技术,实现在多样化硬件平台上的高效推理,同时保持低资源占用与易用性。 最近DeepSeek太火了&#x…...
JDK 8+新特性(Stream API、Optional、模块化等)
JDK 8新特性(Stream API、Optional、模块化等) 一、Stream API 1.1 概述 Stream API 是 Java 8 引入的一个新的抽象概念,它允许以声明式的方式处理数据集合。Stream 不是一个数据结构,而是对数据源(如集合、数组等&…...
国产编辑器EverEdit - 独门暗器:自动监视剪贴板内容
1 监视剪贴板 1.1 应用场景 如果需要对剪贴板的所有历史进行记录,并进行分析和回顾,则可以使用监视剪贴板功能,不仅在EverEdit中的复制会记录,在其他应用的复制也会记录。 1.2 使用方法 新建一个空文档(重要:防止扰乱…...
贪心算法-买卖股票的最佳时机
买卖股票的最佳时机 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天 的价格。你只能选择 某一天 买入这只股票,并选择在 未来的某一个不同的日子 卖出该股 票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易…...
文本操作基础知识:正则表达式
目录 摘要: 一、语法 二、匹配模式pattern 1、普通字符[ ] 2、限定字符 3、定位字符 4、运算字符( ) 三、修饰符flags 四、各语言的正则使用 1、Python的re 参考资料: 摘要: 常用匹配:[A-C]、[^A-C]、\w、\d、\n、\r、…...
【Scrapy】Scrapy教程6——提取数据
前一小节我们拿到了页面的数据,那页面中那么多内容,我们想要其中的部分内容,该如何获取呢?这就需要对我们下载到的数据进行解析,提取出来想要的数据,这节就讲讲如何提取数据。 引入 我们编辑保存下来的shouye.html文件看下,发现这是什么鬼,全是如下图的代码。 没错…...
PHP 网络编程介绍
PHP 学习资料 PHP 学习资料 PHP 学习资料 在当今数字化时代,网络编程是开发各类应用必不可少的技能。PHP 作为一门广泛应用于 Web 开发的编程语言,同样具备强大的网络编程能力。接下来,我们将深入探讨 PHP 中网络连接的建立、Socket 编程、…...
【C语言】C语言 食堂自动化管理系统(源码+数据文件)【独一无二】
👉博__主👈:米码收割机 👉技__能👈:C/Python语言 👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。 【C语言】C语言 食堂自动化管理系统(源…...
mybatis存储过程返回list
在MyBatis中,要想通过调用存储过程返回一个List集合,你需要在Mapper接口中定义一个方法,并使用Param注解来传递存储过程的参数。同时,你需要在Mapper XML文件中配置相应的<select>标签,并指定statementType"…...
【vue】nodejs版本管理利器:nvm
nvm(Node Version Manager)即 Node 版本管理器,是一个用于在系统中轻松安装、管理和切换不同版本 Node.js 的工具。 在实际开发中,不同的项目可能基于不同版本的 Node.js 构建。比如一个旧项目依赖于 Node.js 12.x 版本的特定功能…...
负载测试工具有哪些?
Apache JMeter Apache JMeter 是一款开源的性能测试工具,主要用于对 Web 应用程序进行功能、负载和压力测试。JMeter 支持多种协议和技术,包括 HTTP, HTTPS, FTP 和 WebSocket 等。通过模拟大量并发用户访问来评估应用程序的表现1。 jmeter -n -t testp…...
路由基础 | 路由引入实验 | 不同路由引入方式存在的问题
注:本文为 “路由基础 | 路由表 | 路由引入” 相关文章合辑。 未整理去重。 路由基本概念 1—— 路由表信息、路由进表以及转发流程、最长掩码匹配原则 静下心来敲木鱼已于 2023-11-26 14:06:22 修改 什么是路由 路由就是指导报文转发的路径信息,可以…...
网络安全不分家 网络安全不涉及什么
何为网络安全 信息安全是指系统的硬件、软件及其信息受到保护,并持续正常运行和服务。信息安全的实质是保护信息系统和信息资源免受各种威胁、干扰和破坏,即保证信息的安全性。 网络安全是指利用网络技术、管理和控制等措施,保证网络系统和…...
智能编程助手功能革新与价值重塑之:GitHub Copilot
引言: GitHub Copilot 的最新更新为开发者带来了显著变化,其中 Agent Mode 功能尤为引人注目。该模式能够自动识别并修复代码错误、自动生成终端命令,并具备多级任务推理能力,这使得开发者在开发复杂功能时,可大幅减少…...
wordpress企业官网建站的常用功能
WordPress 是一个功能强大的内容管理系统(CMS),广泛用于企业官网的建设。以下是企业官网建站中常用的 WordPress 功能: 1. 页面管理 自定义页面模板:企业官网通常需要多种页面布局,如首页、关于我们、产品展示、联系我们等。Wor…...
讯方·智汇云校华为官方授权培训机构
1.官方授权 讯方智汇云校是华为领先级授权培训机构(华为授权培训合作伙伴(HALP)体系,分为认证、优选、领先三个等级,领先级是HALP最高级),代表着华为对培训合作伙伴在专业能力、师资队伍、合作…...
C语言中的文件
文章目录 文件1. 流1.1 文件缓冲1.2 标准流1.3 文本文件和二进制文件 2. 打开/关闭文件2.1 fopen2.2 fclose 3. 读写文件3.1 fgetc & fputc3.2 fgets & futs3.3 fscanf & fprintf3.4 fread & fwrite 4. 文件定位5. 错误处理5.1 errno 文件 1. 流 在 C 语言中…...
利用分治策略优化快速排序
1. 基本思想 分治快速排序(Quick Sort)是一种基于分治法的排序算法,采用递归的方式将一个数组分割成小的子数组,并通过交换元素来使得每个子数组元素按照特定顺序排列,最终将整个数组排序。 快速排序的基本步骤&#…...
前端工程化的具体实现细节
🤍 前端开发工程师、技术日更博主、已过CET6 🍨 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 🕠 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 🍚 蓝桥云课签约作者、上架课程《Vue.js 和 E…...
数据分析--数据清洗
一、数据清洗的重要性:数据质量决定分析成败 1.1 真实案例警示 电商平台事故:2019年某电商大促期间,因价格数据未清洗导致错误标价,产生3000万元损失医疗数据分析:未清洗的异常血压值(如300mmHgÿ…...
【Python】 -- 趣味代码 - 小恐龙游戏
文章目录 文章目录 00 小恐龙游戏程序设计框架代码结构和功能游戏流程总结01 小恐龙游戏程序设计02 百度网盘地址00 小恐龙游戏程序设计框架 这段代码是一个基于 Pygame 的简易跑酷游戏的完整实现,玩家控制一个角色(龙)躲避障碍物(仙人掌和乌鸦)。以下是代码的详细介绍:…...
day52 ResNet18 CBAM
在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...
sqlserver 根据指定字符 解析拼接字符串
DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Rust 异步编程
Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...
c#开发AI模型对话
AI模型 前面已经介绍了一般AI模型本地部署,直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型,但是目前国内可能使用不多,至少实践例子很少看见。开发训练模型就不介绍了&am…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
基于IDIG-GAN的小样本电机轴承故障诊断
目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) 梯度归一化(Gradient Normalization) (2) 判别器梯度间隙正则化(Discriminator Gradient Gap Regularization) (3) 自注意力机制(Self-Attention) 3. 完整损失函数 二…...
