Leetcode - 周赛436
目录
- 一、3446. 按对角线进行矩阵排序
- 二、3447. 将元素分配给有约束条件的组
- 三、3448. 统计可以被最后一个数位整除的子字符串数目
- 四、3449. 最大化游戏分数的最小值
一、3446. 按对角线进行矩阵排序
题目链接

本题可以暴力枚举,在确定了每一个对角线的第一个元素下标 ( i , j ) (i,j) (i,j) 后,下一个元素的下标就是 ( i + 1 , j + 1 ) (i+1,j+1) (i+1,j+1),即只要同时 i i i++, j j j++就可以枚举该对角线上的元素了。
这里再介绍一种更加简单的做法,我们可以定义 k = m − ( j − i ) k=m-(j-i) k=m−(j−i),画个图理解一下:

此时,如果我们枚举 j j j,那么更据上述公式 i = j + k − m , j = m + i − k i = j + k - m,j=m+i-k i=j+k−m,j=m+i−k,又因为 i ∈ [ 0 , n − 1 ] , j ∈ [ 0 , m − 1 ] i\in [0,n-1],j\in [0, m-1] i∈[0,n−1],j∈[0,m−1],所有 j ∈ [ m a x ( m − k , 0 ) , m i n ( m + n − 1 − k , m − 1 ) ] j\in [max(m-k,0),min(m+n-1-k,m-1)] j∈[max(m−k,0),min(m+n−1−k,m−1)]。
代码如下:
class Solution {public int[][] sortMatrix(int[][] g) {int n = g.length, m = g[0].length;int[][] ans = new int[n][m];// k = m - (j - i)// j = m - k + i (i=[0,n-1],j=[0,m-1])// i = k + j - mfor(int k=1; k<n+m; k++){int minJ = Math.max(m - k, 0);int maxJ = Math.min(m - k + n - 1, m - 1);List<Integer> res = new ArrayList<>();for(int j=minJ; j<=maxJ; j++){res.add(g[k+j-m][j]);}if(n-k>0) Collections.sort(res);else Collections.sort(res, (x,y)->y-x);for(int j=minJ, i=0; j<=maxJ; j++){ans[k+j-m][j] = res.get(i++);}}return ans;}
}
二、3447. 将元素分配给有约束条件的组
题目链接

本题就是一个调和级数的问题,直接枚举数组 e l e m e n t s elements elements 中的元素 e l e m e n t s [ j ] elements[j] elements[j],再枚举每个元素及其倍数 y y y,记录 y y y 对应的下标 j j j(由于枚举数组的时候从前往后遍历,所以这里的小标已经是最小的了)。如果 y y y 被枚举过,直接 c o n t i n u e continue continue。最后枚举 a s s i g n e d assigned assigned 数组,给其中的每个元素分配对应的 j j j,没有赋值为 − 1 -1 −1.
代码如下:
class Solution {public int[] assignElements(int[] g, int[] e) {int n = g.length;int mx = 0;for(int x : g){mx = Math.max(x, mx);}int[] cnt = new int[mx+1];Arrays.fill(cnt, -1);//O(nlogn)for(int i=0; i<e.length; i++){int x = e[i];if(x > mx || cnt[x] != -1) continue;for(int y=x; y<=mx; y+=x){if(cnt[y] != -1) continue;cnt[y] = i;}}int[] ans = new int[n];for(int i=0; i<n; i++){ans[i] = cnt[g[i]];}return ans;}
}
三、3448. 统计可以被最后一个数位整除的子字符串数目
题目链接

本题主要涉及到取模运算的一个知识点: ( a ∗ 10 + b ) % m = ( a % m ∗ 10 + b ) % m (a*10+b)\%m=(a\%m*10+b)\%m (a∗10+b)%m=(a%m∗10+b)%m,对于 s [ i ] s[i] s[i] 来说,不需要知道 { s [ 0 : i ] , s [ 1 : i ] , s [ 2 : i ] , . . . } \{s[0:i],s[1:i],s[2:i],...\} {s[0:i],s[1:i],s[2:i],...} 这些数的具体数值,只需要知道它们 % j \%j %j 的值就行( j ∈ [ 1 , 9 ] j\in[1,9] j∈[1,9])。这样就大大降低它的时间复杂度,可以使用数组 f [ n + 1 ] [ i ] [ j ] f[n+1][i][j] f[n+1][i][j] 统计以 s [ n ] s[n] s[n] 结尾的数中, % i = j \%i=j %i=j 的元素个数。
代码如下:
class Solution {//(a * 10 + b) % m//(a % m * 10 + b) % mpublic long countSubstrings(String s) {long ans = 0;int n = s.length();long[][] f = new long[10][9];//f[i][j]: %i 且 %i 的值为 j 的元素个数for(int i=0; i<n; i++){int x = s.charAt(i) - '0';long[][] t = new long[10][9];for(int j=1; j<10; j++){t[j][x%j] = 1;for(int k=0; k<j; k++){int y = k * 10 + x;t[j][y%j] += f[j][k];}}f = t;if(x == 0) continue;ans += f[x][0];}return ans;}
}
四、3449. 最大化游戏分数的最小值
题目链接

本题求最小值最大,可以判断是二分,再看是否存在单调性,对于本题来说,如果最小值越小,它需要的操作次数越少,就更可能 ≤ m \leq m ≤m;最小值越大,它需要的操作次数越多,就更可能 > m > m >m。具有单调性,可以用二分来做。
接下来就是写 c h e c k ( ) check() check() 方法,即判断二分的答案 m i d mid mid,能否在 m m m 次操作之内使得最小值 ⩾ m i d \geqslant mid ⩾mid。这里有一个结论:对于任何一种左右横跳的移动路径,都可以将其转换成相邻两个数之间的移动路径。对于每一个 p = p o i n t s [ i ] p = points[i] p=points[i] 来说,至少需要移动到 i i i 点 k = ( m i d − 1 ) / p k=(mid-1)/p k=(mid−1)/p 次才能 ⩾ m i d \geqslant mid ⩾mid,由于它每移动 2 次才能再次回到 i i i 点,所以需要操作 1 + ( k − 1 ) ∗ 2 1+(k-1)*2 1+(k−1)∗2 次( 从 i − 1 到 i 需要 1 次,剩下在 i 和 i + 1 之间左右横跳 从i-1到i需要1次,剩下在i和i+1之间左右横跳 从i−1到i需要1次,剩下在i和i+1之间左右横跳),对于 i + 1 i+1 i+1 点来说,在计算 i i i 点时就已经操作了 p r e = k − 1 pre=k-1 pre=k−1 次,所以需要额外减去 p r e pre pre。最终判断 m ≥ 0 \geq 0 ≥0
代码如下:
class Solution {public long maxScore(int[] points, int m) {int n = points.length;int mn = points[0];for(int x : points){mn = Math.min(x, mn);}long l = 1, r = (long)(m+1) / 2 * mn;while(l <= r){long mid = (l + r) >>> 1;if(check(mid, points, m)){l = mid + 1;}else{r = mid - 1;}}return l - 1;}boolean check(long low, int[] p, int m){int n = p.length;int pre = 0;for(int i=0; i<n; i++){int k = (int)((low - 1) / p[i]) + 1 - pre;if(i == n - 1 && k <= 0) break;if(k < 1) k = 1;//此时已经满足条件,但仍需使用一个操作从 i-1 移动到 im -= 2 * k - 1;if(m < 0) return false;pre = k - 1;}return true;}
}
相关文章:
Leetcode - 周赛436
目录 一、3446. 按对角线进行矩阵排序二、3447. 将元素分配给有约束条件的组三、3448. 统计可以被最后一个数位整除的子字符串数目四、3449. 最大化游戏分数的最小值 一、3446. 按对角线进行矩阵排序 题目链接 本题可以暴力枚举,在确定了每一个对角线的第一个元素…...
【pytest】编写自动化测试用例命名规范README
API_autoTest 项目介绍 1. pytest命名规范 测试文件: 文件名需要以 test_ 开头或者以 _test.py 结尾。例如,test_login.py、user_management_test.py 这样的命名方式,pytest 能够自动识别并将其作为测试文件来执行其中的测试用例。 测试类…...
Compose常用UI组件
Compose常用UI组件 概述Modifier 修饰符常用Modifier修饰符作用域限定Modifier Modifier 实现原理Modifier.Element链的构建链的解析 常用基础组件常用布局组件列表组件 概述 Compose 预置了很多基础组件,如 Button,TextField,TopAppBar等&a…...
斐波那契数列模型:在动态规划的丝绸之路上追寻斐波那契的足迹(上)
文章目录 引言递归与动态规划的对比递归解法的初探动态规划的优雅与高效自顶向下的记忆化搜索自底向上的迭代法 性能分析与比较小结 引言 斐波那契数列,这一数列如同一条无形的丝线,穿越千年时光,悄然延续其魅力。其定义简单而优美ÿ…...
Hackthebox- Season7- Titanic 简记 [Easy]
简记 ip重定向到 http://titanic.htb,先添加hosts 收集子域名 wfuzz -c -u http://titanic.htb/ -w /usr/share/seclists/Discovery/DNS/subdomains-top1million-20000.txt -H Host:FUZZ.titanic.htb --hl 9 ******************************************************** * Wfu…...
Sa-Token 根据官方文档简单实现登录认证的示例
Sa-Token 根据官方文档实现登录鉴权测试 功能实现步骤依赖配置文件启动类创建 controller启动项目测试不用密码登录查看cookie状态 密码登录查看cookie状态 修改token名称 Apipost 测试无 cookie 模式【使用 token】后端将 token 返回到前端修改代码:测试࿱…...
rustdesk编译修改名字
最近,我用Rust重写了一个2W行C代码的linux内核模块。在此记录一点经验。我此前没写过内核模块,认识比较疏浅,有错误欢迎指正。 为什么要重写? 这个模块2W行代码量看起来不多,却在线上时常故障,永远改不完。…...
BS5852英国家具防火安全条款主要包括哪几个方面呢?
什么是BS5852检测? BS5852是英国针对家用家具的强制性安全要求,主要测试家具在受到燃烧香烟和火柴等火源时的可燃性。这个标准通常分为四个部分进行测试,但实际应用中主要测试第一部分和第二部分,包括烟头测试和利用乙炔火焰模拟…...
【运维】源码编译安装cmake
背景: 已经在本地源码编译安装gcc/g,现在源码安装cmake 下载源码 下载地址:CMake - Upgrade Your Software Build System 安装步骤: ./bootstrap --prefix/usr/local/cmake make make install 错误处理 1、提示找不到libmpc.…...
检测网络安全漏洞 工具
实验一的名称为信息收集和漏洞扫描 实验环境:VMware下的kali linux2021和Windows7 32,网络设置均为NAT,这样子两台机器就在一个网络下。攻击的机器为kali,被攻击的机器为Windows 7。 理论知识记录: 1.信息收集的步骤 2.ping命令…...
frameworks 之 Activity添加View
frameworks 之 Activity添加View 1 LaunchActivityItem1.1 Activity 创建1.2 PhoneWindow 创建1.3 DecorView 创建 2 ResumeActivityItem 讲解 Activity加载View的时机和流程 涉及到的类如下 frameworks/base/core/java/android/app/Activity.javaframeworks/base/services/cor…...
UWB技术中的两种调制方式:PPM与PAM
Ultra-Wideband (UWB) 技术以其低功耗、宽频谱和高精度定位的特点,广泛应用于物联网(IoT)、智能家居、资产追踪和无线通信等领域。在UWB中,信号的调制方式对于数据传输的效率和精度起着至关重要的作用。本文将深入探讨UWB中常用的…...
达梦:用户和模式
目录标题 数据库管理系统与用户权限管理**四权分立****用户管理与权限划分****用户管理界面与权限控制****用户创建与管理****实操**1. **默认创建用户与模式**:2. **用户权限和角色分配**:3. **命令行管理用户与角色**:4. 模式也可以创建 **…...
23. AI-大语言模型-DeepSeek
文章目录 前言一、DeepSeek是什么1. 简介2. 产品版本3. 特征4. 地址链接5. 三种访问方式1. 网页端和APP2. DeepSeek API 二、DeepSeek可以做什么1. 应用场景2. 文本生成1. 文本创作2. 摘要与改写3. 结构化生成 3. 自然语言理解与分析1. 语义分析2. 文本分类3. 知识推理 4. 编程…...
Spring-GPT智谱清言AI项目(附源码)
一、项目介绍 本项目是Spring AI第三方调用整合智谱请言(官网是:https://open.bigmodel.cn)的案例,回答响应流式输出显示,这里使用的是免费模型,需要其他模型可以去 https://www.bigmodel.cn/pricing 切换…...
计算机网络(涵盖OSI,TCP/IP,交换机,路由器,局域网)
一、网络通信基础 (一)网络通信的概念 网络通信是指终端设备之间通过计算机网络进行的信息传递与交流。它类似于现实生活中的物品传递过程:数据(物品)被封装成报文(包裹),通过网络…...
云计算架构学习之Ansible-playbook实战、Ansible-流程控制、Ansible-字典循环-roles角色
一、Ansible-playbook实战 1.Ansible-playbook安装软件 bash #编写yml [rootansible ansible]# cat wget.yml - hosts: backup tasks: - name: Install wget yum: name: wget state: present #检查playbook的语法 [rootansible ansible]…...
《运维工程师如何利用DeepSeek实现智能运维:分级实战指南》
目录 智能运维革命:DeepSeek带来的范式转变DeepSeek核心运维能力全景解析分级实战场景与解决方案 3.1 初级工程师:自动化运维入门3.2 中级工程师:复杂系统诊断与优化3.3 高级工程师:架构级智能运维典型项目案例深度剖析 4.1 金融系统全链路监控体系构建4.2 电商大促资源弹性…...
windows事件倒计时器与提醒组件
widgets 这是桌面组件前端开源组件,作者称:项目还在持续完善中,目前包含键盘演示、抖音热榜、喝水提醒、生日列表、待办事项、倒计时、灵动通知、打工进度等多个组件 有vue编程能力的可以自己做组件 百度网盘 夸克网盘 桌面组件 | Ca…...
Mac OS JAVA_HOME设置
个人博客地址:Mac OS JAVA_HOME设置 | 一张假钞的真实世界 在MacOS上使用DMG文件安装了Jdk8 之后,在默认路径下找不到JDK的HOME路径: $ which java /usr/bin/java $ ls -l /usr/bin/java lrwxr-xr-x 1 root wheel 74 12 6 2015 /usr/b…...
XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
XCTF-web-easyupload
试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)
HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
Zustand 状态管理库:极简而强大的解决方案
Zustand 是一个轻量级、快速和可扩展的状态管理库,特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...
CMake基础:构建流程详解
目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
【机器视觉】单目测距——运动结构恢复
ps:图是随便找的,为了凑个封面 前言 在前面对光流法进行进一步改进,希望将2D光流推广至3D场景流时,发现2D转3D过程中存在尺度歧义问题,需要补全摄像头拍摄图像中缺失的深度信息,否则解空间不收敛…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
