【机器学习】CNN与Transformer的表面区别与本质区别
仅供参考
表面区别
1. 结构和原理:
- CNN:主要通过卷积层来提取特征,这些层通过滑动窗口(卷积核)捕捉局部特征,并通过池化层(如最大池化)来降低特征的空间维度。CNN非常适合处理具有网格状拓扑结构的数据,如图像。
- Transformer:基于自注意力(Self-Attention)机制,能够捕捉序列中任意两个位置之间的依赖关系,无论它们之间的距离有多远。Transformer最初是为处理序列数据(如文本)设计的,但后来也被应用于图像处理。
2. 参数共享:
- CNN:在卷积层中,卷积核的参数在整个输入数据上是共享的。
- Transformer:在自注意力层中,所有的参数(包括自注意力的权重)都是全局共享的。
3. 感受野:
- CNN:随着网络深度的增加,感受野(即网络能够感知的输入区域大小)也随之增加。
- Transformer:由于自注意力机制,Transformer的感受野理论上是全局的,即每个位置都可以直接与序列中的任何其他位置进行交互。
4. 并行处理能力:
- CNN:由于卷积操作的局部性,CNN在并行处理上存在一定的限制。
- Transformer:由于自注意力机制的全局性,Transformer可以更容易地进行并行处理,这使得在处理长序列时更加高效。
5. 应用领域:
- CNN:最初是为图像识别和处理设计的,但也被广泛应用于视频、语音识别等领域。
- Transformer:最初是为自然语言处理(NLP)任务设计的,如机器翻译、文本分类等,但后来也被扩展到图像处理领域,如Vision Transformer(ViT)。
6. 训练和泛化:
- CNN:在图像领域,CNN通常需要大量的标注数据来训练。
- Transformer:由于其自注意力机制,Transformer在处理长距离依赖和复杂关系时可能具有更好的泛化能力。
7. 计算复杂度:
- CNN:计算复杂度通常较低,因为卷积操作相对简单。
- Transformer:由于需要计算序列中所有位置之间的自注意力,计算复杂度较高,尤其是在序列长度较长时。
相关文章:
【机器学习】CNN与Transformer的表面区别与本质区别
仅供参考 表面区别 1. 结构和原理: CNN:主要通过卷积层来提取特征,这些层通过滑动窗口(卷积核)捕捉局部特征,并通过池化层(如最大池化)来降低特征的空间维度。CNN非常适合处理具有网格状拓扑结构的数据,如图像。Transformer:基于自注意力(Self-Attention)机制,能…...
框架篇 - Hearth ArcGIS 框架扩展(DryIoC、Options、Nlog...)
框架篇 - Hearth ArcGISPro Addin 框架扩展(DryIoC、Options、Nlog…) 文章目录 框架篇 - Hearth ArcGISPro Addin 框架扩展(DryIoC、Options、Nlog...)1 使用IoC、DI1.1 服务注册1.1.1 `ServiceAttribute`服务特性1.2 依赖注入1.2.1 SDK底层创建实例类型依赖注入1.2.2 `In…...
JUC并发—7.AQS源码分析三
大纲 1.等待多线程完成的CountDownLatch介绍 2.CountDownLatch.await()方法源码 3.CountDownLatch.coutDown()方法源码 4.CountDownLatch总结 5.控制并发线程数的Semaphore介绍 6.Semaphore的令牌获取过程 7.Semaphore的令牌释放过程 8.同步屏障CyclicBarrier介绍 9.C…...
windows系统本地部署DeepSeek-R1全流程指南:Ollama+Docker+OpenWebUI
本文将手把手教您使用OllamaDockerOpenWebUI三件套在本地部署DeepSeek-R1大语言模型,实现私有化AI服务搭建。 一、环境准备 1.1 硬件要求 CPU:推荐Intel i7及以上(需支持AVX2指令集) 内存:最低16GB,推荐…...
当C#邂逅Deepseek, 或.net界面集成deepseek
最近,我开发了一个C#界面,并集成了Deepseek的接口功能,实现了本地化部署和流模式读取。 过程充满了挑战和乐趣,也让我深刻体会到Deepseek的强大之处。今天,我想和大家分享这段经历,希望能激发你对Deepseek的…...
Cursor实战:Web版背单词应用开发演示
Cursor实战:Web版背单词应用开发演示 需求分析自行编写需求文档借助Cursor生成需求文档 前端UI设计后端开发项目结构环境参数数据库设计安装Python依赖运行应用 前端代码修改测试前端界面 测试数据生成功能测试Bug修复 总结 在上一篇《Cursor AI编程助手不完全指南》…...
Kotlin Lambda
Kotlin Lambda 在探索Kotlin Lambda之前,我们先回顾下Java中的Lambda表达式,Java 的 Lambda 表达式是 Java 8 引入的一项强大的功能,它使得函数式编程风格的代码更加简洁和易于理解。Lambda 表达式允许你以一种更简洁的方式表示实现接口&…...
V4L2驱动之UVC
以下是关于V4L2摄像头驱动框架与UVC协议的关联分析,从内核驱动到用户空间的完整视角: 1. V4L2驱动框架核心架构 关键组件: 核心层 (V4L2 Core) v4l2_device:设备的总入口,管理所有子组件video_device:对应…...
numpy(01 入门)
前面内容:pandas(01 入门) 目录 一、numpy 简介 1.1 Numpy 应用场景 1.2 Numpy 优点 1.3 Numpy 缺点 1.4 相关链接 二、Numpy环境安装配置 2.1 Python自带包 2.2 Numpy 安装 三、NumPy.Ndarray 3.1 ndarray特点: 3.2 ndarray()参数&…...
Chatgpt论文润色指令整理
1. 内容润色 这个来自文章《three ways ChatGPT helps me in my academic writing》。 在输入你要润色的内容前,先输入以下内容来驯化chatgpt的身份: I’m writing a paper on [话题] for a leading [学科/杂志] academic journal. What I tried to s…...
vscode复制到下一行
linux中默认快捷键是ctrl shift alt down/up 但是在vscode中无法使用,应该是被其他的东西绑定了,经测试,可以使用windows下的快捷键shift alt down/up { “key”: “shiftaltdown”, “command”: “editor.action.copyLinesDownAction”…...
Python天梯赛刷题-五分题(上)
蓝桥杯题刷的好累,感觉零帧起手、以题带学真的会很吃力,打算重新刷一点天梯的题目巩固一下,我本人在算法非常不精通的情况下,自认为天梯的L1的题是会相对容易一些的,可能有一些没有脑子光靠力气的“硬推”hhhh。 从头…...
【优先级队列】任务分配
任务分配问题,有n个任务,每个任务有个达到时间。将这些任务分配给m个处理器,进行处理。每个处理器的处理时间不一样。处理器的任务列表有最大任务数限制。 分配任务的策略是:当前待分配的任务的处理时刻最小。如果处理时刻相同&am…...
设计模式之适配模式是什么?以及在Spring AOP中的拦截器链的使用源码解析。
前言 本文涉及到适配模式的基本用法,以及在Spring AOP中如何使用,首先需要了解适配模式的工作原理,然后结合Spring AOP的具体实现来详细详细解析源码。 首先,适配模式,也就是Adapter Pattern,属于结构型设计…...
Python 库自制 Cross-correlation 算法
Python 库自制 Cross-correlation 算法 引言正文引言 虽然 Scipy 库中包含了成熟的 Cross-correlation 算法,但是有些时候我们无法使用现成的库进行数据处理。这里介绍如何使用 Python 基础函数自制 Cross-correlation 算法。后续读者可以将该算法转换为其他各类语言。 正文…...
C++(23):为类成员函数增加this参数
C23允许指定类成员函数的第一个参数的this类型,从而更加便于函数重载: #include <iostream> using namespace std;class A{ public:void func(this A&){cout<<"in func1"<<endl;}void func(this const A&){cout<…...
javaSE学习笔记23-线程(thread)-总结
创建线程的三种方式 练习代码 package com.kuang.thread;import java.util.concurrent.Callable; import java.util.concurrent.ExecutionException; import java.util.concurrent.FutureTask;//回顾总结线程的创建 public class ThreadNew {public static void main(String[…...
【DeepSeek服务器部署全攻略】Linux服务器部署DeepSeek R1模型、实现API调用、搭建Web页面以及专属知识库
DeepSeek R1模型的Linux服务器搭建、API访问及Web页面搭建 1,引言2,安装Ollama工具3,下载DeepSeek R1 模型4,DeepSeek命令行对话5,DeepSeek API接口调用6,DeepSeek结合Web-ui实现图形化界面远程访问6.1&…...
【JAVA工程师从0开始学AI】,第四步:闭包与高阶函数——用Python的“魔法函数“重构Java思维
副标题:当严谨的Java遇上"七十二变"的Python函数式编程 历经变量战争、语法迷雾、函数对决,此刻我们将踏入Python最迷人的领域——函数式编程。当Java工程师还在用接口和匿名类实现回调时,Python的闭包已化身"智能机器人"…...
算法日记20:SC72最小生成树(prim朴素算法)
一、题目: 二、题解 2.1:朴素prim的步骤解析 O ( n 2 ) O(n^2) O(n2)(n<1e3) 0、假设,我们现在有这样一个有权图 1、我们随便找一个点,作为起点开始构建最小生成树(一般是1号),并且存入intree[]状态数组中…...
挑战杯推荐项目
“人工智能”创意赛 - 智能艺术创作助手:借助大模型技术,开发能根据用户输入的主题、风格等要求,生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用,帮助艺术家和创意爱好者激发创意、提高创作效率。 - 个性化梦境…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
前端倒计时误差!
提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...
CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建
华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...
在web-view 加载的本地及远程HTML中调用uniapp的API及网页和vue页面是如何通讯的?
uni-app 中 Web-view 与 Vue 页面的通讯机制详解 一、Web-view 简介 Web-view 是 uni-app 提供的一个重要组件,用于在原生应用中加载 HTML 页面: 支持加载本地 HTML 文件支持加载远程 HTML 页面实现 Web 与原生的双向通讯可用于嵌入第三方网页或 H5 应…...
R语言速释制剂QBD解决方案之三
本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...
Python Einops库:深度学习中的张量操作革命
Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...
