当前位置: 首页 > news >正文

基于MATLAB的均匀面阵MUSIC算法DOA估计仿真

基于MATLAB的均匀面阵MUSIC算法DOA估计仿真

文章目录

  • 前言
  • 一、二维MUSIC算法原理
  • 二、二维MUSIC算法MATLAB仿真
  • 三、MATLAB源代码
  • 总结


前言

\;\;\;\;\; 在波达角估计算法中,MUSIC 算法与ESPRIT算法属于特征结构子空间算法,是波达角估计算法中的基石。在前面的文章 一文读懂MUSIC算法DOA估计的数学原理并仿真 中详细介绍了一维MUSIC算法即线阵MUSIC算法DOA估计的原理及仿真,本文将介绍二维MUSIC算法即均匀面阵的MUSIC算法DOA估计原理及MATLAB仿真。


提示:以下是本篇文章正文内容,尊重版权,引用请附上链接。

一、二维MUSIC算法原理

下图为面阵入射信号模型,
在这里插入图片描述
\;\;\;\;\; 假设从远场有 K K K 个互不相关的窄带信号,入射到一个阵元个数为 M × N M×N M×N 的平面阵列上。记第 i i i个入射信号的方位角和俯仰角分别为 θ i \theta_i θi φ i \varphi_i φi ,则阵列接收信号可以表示为:
z ( t ) = A s ( t ) + n ( t ) \boldsymbol{z}(t)=\boldsymbol A \boldsymbol s(t)+\boldsymbol n(t) z(t)=As(t)+n(t)其中 A \boldsymbol A A是维度为(MN×K)的均匀矩形阵列的阵列流形,可以表示为如下所示的式子:
A = [ a ( θ k , φ 1 ) , a ( θ 2 , φ 2 ) , ⋯ , a ( θ K , φ K ) ] T \mathbf{A}=\begin{bmatrix}\boldsymbol{a}(\theta_k,\varphi_1),\boldsymbol{a}(\theta_2,\varphi_2),\cdots,\boldsymbol{a}(\theta_K,\varphi_K)\end{bmatrix}^T A=[a(θk,φ1),a(θ2,φ2),,a(θK,φK)]T a ( θ k , φ k ) \boldsymbol{a}(\theta_k,\varphi_k) a(θk,φk)为第k个入射信号的导向矢量,仅仅由阵列的阵元排布和参考阵元的选择所决定,用公式可以表示为:
a ( θ k , φ k ) = a x ( θ k , φ k ) ⊗ a y ( θ k , φ k ) ∈ C M N × 1 \boldsymbol{a}(\theta_k,\varphi_k)=\boldsymbol{a}_x(\theta_k,\varphi_k)\otimes\boldsymbol{a}_y(\theta_k,\varphi_k)\in C^{MN\times1} a(θk,φk)=ax(θk,φk)ay(θk,φk)CMN×1 其中 ⊗ \otimes 表示的是克罗内克内积(Kronecker Product), a x ( θ k , φ k ) \boldsymbol{a}_x(\theta_k,\varphi_k) ax(θk,φk)表示x轴方向上均匀线阵接收信号的方向矢量, a y ( θ k , φ k ) \boldsymbol{a}_y(\theta_k,\varphi_k) ay(θk,φk)表示y轴方向上均匀线阵接收信号的方向矢量,可分别写为如下数学表达式:
a x ( θ k , φ k ) = [ a x , 0 ( θ k , φ k ) , a x , 1 ( θ k , φ k ) , ⋯ , a x , M − 1 ( θ k , φ k ) ] T \boldsymbol{a}_x(\theta_k,\varphi_k)=\begin{bmatrix}a_{x,0}(\theta_k,\varphi_k),a_{x,1}(\theta_k,\varphi_k),\cdots,a_{x,M-1}(\theta_k,\varphi_k)\end{bmatrix}^T ax(θk,φk)=[ax,0(θk,φk),ax,1(θk,φk),,ax,M1(θk,φk)]T a y ( θ k , φ k ) = [ a y , 0 ( θ k , φ k ) , a y , 1 ( θ k , φ k ) , ⋯ , a y , N − 1 ( θ k , φ k ) ] T \boldsymbol{a}_y(\theta_k,\varphi_k)=\begin{bmatrix}a_{y,0}(\theta_k,\varphi_k),a_{y,1}(\theta_k,\varphi_k),\cdots,a_{y,N-1}(\theta_k,\varphi_k)\end{bmatrix}^T ay(θk,φk)=[ay,0(θk,φk),ay,1(θk,φk),,ay,N1(θk,φk)]T 式中的 s ( t ) \mathbf{s}(t) s(t)是信号源矢量, n ( t ) \mathbf{n}(t) n(t)为高斯白噪声矢量,服从 N ( 0 , σ 2 ) N(0,\sigma^2) N(0,σ2)分布,可以分别表示如下式子:
s ( t ) = [ s 0 ( t ) , s 1 ( t ) , ⋯ , s K − 1 ( t ) ] T \mathbf{s}(t)=\left[\mathbf{s}_0(t),\mathbf{s}_1(t),\cdots,\mathbf{s}_{K-1}(t)\right]^T s(t)=[s0(t),s1(t),,sK1(t)]T n ( t ) = [ n 0 ( t ) , n 1 ( t ) , ⋯ , n M N ( t ) ] T \mathbf{n}(t)=\left[\mathbf{n}_0(t),\mathbf{n}_1(t),\cdots,\mathbf{n}_{MN}(t)\right]^T n(t)=[n0(t),n1(t),,nMN(t)]T \;\;\;\;\; 阵列接收信号的协方差矩阵可以表示为: R = E [ z z H ] \mathbf{R} = \mathbb{E}[\mathbf{z}\mathbf{z}^H] R=E[zzH] = A E [ s s H ] A H + σ 2 I = \mathbf A\mathbb{E}[\mathbf{s}\mathbf{s}^H]\mathbf A^H + \sigma^2\mathbf{I} =AE[ssH]AH+σ2I = A R S A H + σ 2 I =\mathbf A \mathbf R_S\mathbf A^H + \sigma^2\mathbf{I} =ARSAH+σ2I 其中 R S \mathbf{R}_S RS表示入射信号的协方差矩阵, σ 2 I \sigma^2\mathbf{I} σ2I表示功率为 σ 2 \sigma^2 σ2的高斯白噪声的协方差矩阵。
\;\;\;\;\; 实际应用中天线阵列获取的信息是有限次的快拍,因此只能得到协方差矩阵的估计值 R ^ \hat{\mathbf{R}} R^,其计算公式如下:
R ^ = 1 J ∑ j = 1 J z ( j ) z H ( j ) \hat{\mathbf{R}} = \frac{1}{J}\sum_{j=1}^{J}\mathbf{z}(j)\mathbf{z}^H(j) R^=J1j=1Jz(j)zH(j) \;\;\;\;\; 由于接收信号的协方差矩阵 R \mathbf{R} R是对称矩阵,因此可以对其进行特征值分解,可以得到:
R = U Λ U T \mathbf{R} = \mathbf{U}\boldsymbol{\Lambda}\mathbf{U}^T R=UΛUT 其中 U \mathbf{U} U R \mathbf{R} R的特征向量构成的矩阵, Λ \boldsymbol{\Lambda} Λ是一个由特征值构成的对角矩阵。
Λ = d i a g { λ 1 , λ 2 , . . . , λ M N } \boldsymbol{\Lambda} = diag\{ \lambda_1,\lambda_2,...,\lambda_{MN} \} Λ=diag{λ1,λ2,...,λMN} \;\;\;\;\; 假设对角矩阵中的特征值降序排列,满足如下关系:
λ 1 ≥ λ 2 ≥ ⋯ ≥ λ K > λ K + 1 = ⋯ = λ M N = σ 2 \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_K > \lambda_K + 1 = \cdots = \lambda_{MN} = \sigma^2 λ1λ2λK>λK+1==λMN=σ2 由前 K K K个较大的特征值构成的对角矩阵 Λ S \boldsymbol{\Lambda}_S ΛS,其对应的特征向量构成的矩阵 U S \mathbf U_S US为信号子空间。由后 M − K M-K MK个较小的特征值构成的对角矩阵 A N \mathbf A_N AN,其对应的特征向量构成的矩阵 U N \mathbf U_N UN为噪声子空间。

\;\;\;\;\; 根据前文假设,信号与噪声相互独立,因此信号子空间与噪声子空间是相互正交的,故信号阵列流矢量与噪声子空间也具有正交性。同一维MUSIC算法一样,可构造二维空间谱函数:
P 2 D − M U S I C ( θ , ϕ ) = 1 a H ( θ , ϕ ) U N U N H a ( θ , ϕ ) P_{2D-MUSIC}(\theta, \phi) = \frac{1}{\mathbf a^{H}(\theta, \phi) \mathbf U_N \mathbf U_N^{H} \mathbf a(\theta, \phi)} P2DMUSIC(θ,ϕ)=aH(θ,ϕ)UNUNHa(θ,ϕ)1 \;\;\;\;\; 当天线阵列的方向矢量与噪声子空间近似正交时,上式分母部分取极小值,空间谱函数在此时取得极大值,得到空间谱的谱峰。对空间谱进行谱峰搜索,就能够得到入射信号的方位角与俯仰角的角度,至此完成了对于信源的二维 DOA估计。

二、二维MUSIC算法MATLAB仿真

\;\;\;\;\; 参数设置如下:改变任何一个参数,仿真结果都会跟着改变,可以通过修改参数观察不同条件对估计结果的影响。

M=3;           % x轴阵元个数
N=2;           % y轴阵元个数
K=1024;        % 快拍数
fc=100e+6;     % 载波
fs=300e+6;     % 采样频率
Pn=1;          % 噪声功率fines=[45 180 250 300]; % 信号入射方位角
thetas=[5 30 55 75];    % 信号入射俯仰角
signal_f=[15e6 30e6 45e6 60e6]; % 信号频率
signal_SNR=[30 30 30 30];       % 信噪比m=(0:M-1)';    % x轴坐标
n=(0:N-1)';    % y轴坐标
c=3e+8;        % 光速
lamda=c/fc;    % 波长
dx=1/2*lamda;  % x轴阵元间距
dy=1/2*lamda;  % y轴阵元间距

在这里插入图片描述
在这里插入图片描述
\;\;\;\;\; 通过观察参数,可以得出以下结论,可以自己通过改变参数来验证,这里就不贴图了。
1、随着阵元数目的增大,MUSIC 算法的分辨率逐渐增强。
2、随着信号信噪比的增大,MUSIC 算法的分辨率逐渐增强。
3、当阵元间距与波长的比值为二分之一时,MUSIC算法能够有效进行 DOA 估计;当阵元间距小于波长的二分之一时,MUSIC 算法的分辨率会降低;当阵元间距大于波长的二分之一时,由于采样严重不足,MUSIC算法可能会丧失分辨能力。

三、MATLAB源代码

均匀面阵MUSIC算法DOA估计MATLAB仿真源代码


总结

\;\;\;\;\; 以上就是今天记录的所有内容,分享了均匀面阵MUSIC算法DOA估计的原理及其在MATLAB软件上仿真的结果。

相关文章:

基于MATLAB的均匀面阵MUSIC算法DOA估计仿真

基于MATLAB的均匀面阵MUSIC算法DOA估计仿真 文章目录 前言一、二维MUSIC算法原理二、二维MUSIC算法MATLAB仿真三、MATLAB源代码总结 前言 \;\;\;\;\; 在波达角估计算法中,MUSIC 算法与ESPRIT算法属于特征结构子空间算法,是波达角估计算法中的基石。在前面…...

HTML/CSS中后代选择器

1.作用:选中指定元素中,符合要求的后代元素. 2.语法:选择器1 选择器2 选择器3 ...... 选择器n(使用空格隔开) 3.举例: /* 选中ul中的所有li */ul li{color: red;}/* 选中类名为subject元素中的所有li */.subject li{color: blue;}/* 选中类名为subject元素中的所有类名为f…...

深入解析「卡顿帧堆栈」 | UWA GPM 2.0 技术细节与常见问题

在游戏开发过程中,卡顿问题一直是影响玩家体验的关键因素。UWA GPM 2.0全新推出的「卡顿帧堆栈」功能,专为研发团队提供精准、高效的卡顿分析方案,能够直观呈现游戏运行时的堆栈信息,助力团队迅速找到性能瓶颈。该功能一经上线&am…...

推荐几款较好的开源成熟框架

一. 若依: 1. 官方网站:https://doc.ruoyi.vip/ruoyi/ 2. 若依SpringBootVueElement 的后台管理系统:https://gitee.com/y_project/RuoYi-Vue 3. 若依SpringBootVueElement 的后台管理系统:https://gitee.com/y_project/RuoYi-Cl…...

Mysql全文索引

引言 在MySQL 5.7.6之前,全文索引只支持英文全文索引,不支持中文全文索引,需要利用分词器把中文段落预处理拆分成单词,然后存入数据库。 从MySQL 5.7.6开始,MySQL内置了ngram全文解析器,用来支持中文、日文…...

配置终端代理

普通的魔法开启之后终端下git clone等命令仍然会无法使用,额外需要手动配置终端代理。 sudo vim /etc/apt/apt.conf.d/99proxyAcquire::http::Proxy "http://127.0.0.1:12334"; Acquire::https::Proxy "http://127.0.0.1:12334";在debian安装时…...

51单片机学习之旅——在LCD1602上显示时钟

新建工程 打开软件 LCD1602模块代码添加 因为我们在LCD1602上显示时钟,因此我们需要添加LCD1602的模块代码 跳转到这条博客51单片机学习之旅——模块化编程集_51单片机ruminant-CSDN博客,复制相关代码跳转到这条博客51单片机学习之旅——模块化编程集…...

Jest单元测试

由于格式和图片解析问题,可前往 阅读原文 前端自动化测试在提高代码质量、减少错误、提高团队协作和加速交付流程方面发挥着重要作用。它是现代软件开发中不可或缺的一部分,可以帮助开发团队构建可靠、高质量的应用程序 单元测试(Unit Testi…...

C++字符串处理指南:从基础操作到性能优化——基于std::string的全面解析

博主将从C标准库中的 std::string 出发,详细探讨字符串的处理方法,涵盖常见操作、性能优化和实际应用场景。以下内容将围绕std::string 的使用展开,结合代码示例进行说明。 一、std::string 的基本操作 1.1 创建与初始化 std::string 提供了…...

JVM类加载过程详解:从字节码到内存的蜕变之旅

一、类加载的意义与整体流程 在Java中,每一个.java文件经过编译都会生成.class字节码文件。但字节码本身并不能直接运行,必须通过 类加载(Class Loading)将其转化为JVM内存中的数据结构,才能被程序调用。 类加载过程就…...

【力扣Hot100详解】解锁“字母异位词分组”:用排序魔法一键通关力扣!

字母异位词分组,力扣第49题,看似是“找不同”的排列游戏,实则是哈希表与字符串处理的经典结合。这道题就像是一把钥匙,能帮你打开“如何高效归类数据”的算法大门。今天,我们就用 Java 带你用“排序魔法”轻松破解它&a…...

vite配置scss全局变量

vite配置scss全局变量 创建单独文件variable.scss在其中定义变量 vite.config.ts中配置 import { defineConfig } from vite import vue from vitejs/plugin-vue import path from path// https://vite.dev/config/ export default defineConfig({plugins: [vue()],resolve:…...

Spring Boot01(注解、)---java八股

Spring Boot中常用注解及其底层实现 1、SpringBootApplication注解: SpringBootApplication注解:这个注解标识了一个SpringBoot工程,它实际上是另外三个注解的组合,这三个注解是: aSpringBootConfiguration&#xff1a…...

2.19学习记录

Web easyupload3.0 这是一道构造.htaccess文件的传马 如下&#xff1a; <FilesMatch "jpg">SetHandler application/x-httpd-php </FilesMatch>.htaccess文件可以作为一个解释器&#xff0c;可以将传进去的图片马改为php马上传之后再传个图片马&#…...

汽车免拆诊断案例 | 2013 款奔驰 S300L 车起步时车身明显抖动

故障现象  一辆2013款奔驰S300L车&#xff0c;搭载272 946发动机&#xff0c;累计行驶里程约为15万km。车主反映&#xff0c;将挡位置于D挡&#xff0c;稍微释放一点制动踏板&#xff0c;车辆蠕动时车身明显抖动&#xff0c;类似气缸失火时的抖动&#xff0c;又类似手动变速器…...

【HeadFirst系列之HeadFirst设计模式】第5天之工厂模式:比萨店的秘密武器,轻松搞定对象创建!

工厂模式&#xff1a;比萨店的秘密武器&#xff0c;轻松搞定对象创建&#xff01; 大家好&#xff0c;今天我们来聊聊设计模式中的工厂模式。如果你曾经为对象的创建感到头疼&#xff0c;或者觉得代码中到处都是 new 关键字&#xff0c;那么工厂模式就是你的救星&#xff01;本…...

Redis如何解决热Key问题

目录 **如何解决 Redis 的热 Key&#xff08;Hot Key&#xff09;问题&#xff1f;****解决方案** **1. 使用多级缓存****方案** **2. 进行 Key 预分片&#xff08;Key Sharding&#xff09;****方案** **3. 使用 Redis 复制机制&#xff08;主从复制或集群&#xff09;****方案…...

从开发到部署:EasyRTC嵌入式视频通话SDK如何简化实时音视频通信的集成与应用

嵌入式设备和视频综合管理平台均支持B/S架构。在B/S架构下&#xff0c;传统的视频观看方式依赖于微软的OCX控件&#xff0c;然而OCX控件的使用正面临越来越多的挑战&#xff1a; 首先&#xff0c;用户需要安装浏览器插件、调整浏览器安全级别&#xff0c;并允许ActiveX控件弹出…...

Zookeeper(58)如何在Zookeeper中实现分布式锁?

在 Zookeeper 中实现分布式锁是一种常见的用例。Zookeeper 提供了强一致性、高可用性的分布式协调服务&#xff0c;使得它非常适合用来实现分布式锁。以下是详细的步骤和代码示例&#xff0c;展示如何在 Zookeeper 中实现分布式锁。 1. Zookeeper 分布式锁的基本原理 Zookeep…...

Mac端homebrew安装配置

拷打了一下午o3-mini-high&#xff0c;不如这位博主的超强帖子&#xff0c;10分钟结束战斗 跟随该文章即可&#xff0c;2025/2/19亲测可行 mac 安装HomeBrew(100%成功)_mac安装homebrew-CSDN博客文章浏览阅读10w次&#xff0c;点赞258次&#xff0c;收藏837次。一直觉得自己写…...

大数据学习栈记——Neo4j的安装与使用

本文介绍图数据库Neofj的安装与使用&#xff0c;操作系统&#xff1a;Ubuntu24.04&#xff0c;Neofj版本&#xff1a;2025.04.0。 Apt安装 Neofj可以进行官网安装&#xff1a;Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

Qt Http Server模块功能及架构

Qt Http Server 是 Qt 6.0 中引入的一个新模块&#xff0c;它提供了一个轻量级的 HTTP 服务器实现&#xff0c;主要用于构建基于 HTTP 的应用程序和服务。 功能介绍&#xff1a; 主要功能 HTTP服务器功能&#xff1a; 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

【笔记】WSL 中 Rust 安装与测试完整记录

#工作记录 WSL 中 Rust 安装与测试完整记录 1. 运行环境 系统&#xff1a;Ubuntu 24.04 LTS (WSL2)架构&#xff1a;x86_64 (GNU/Linux)Rust 版本&#xff1a;rustc 1.87.0 (2025-05-09)Cargo 版本&#xff1a;cargo 1.87.0 (2025-05-06) 2. 安装 Rust 2.1 使用 Rust 官方安…...

JavaScript 数据类型详解

JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型&#xff08;Primitive&#xff09; 和 对象类型&#xff08;Object&#xff09; 两大类&#xff0c;共 8 种&#xff08;ES11&#xff09;&#xff1a; 一、原始类型&#xff08;7种&#xff09; 1. undefined 定…...

Bean 作用域有哪些?如何答出技术深度?

导语&#xff1a; Spring 面试绕不开 Bean 的作用域问题&#xff0c;这是面试官考察候选人对 Spring 框架理解深度的常见方式。本文将围绕“Spring 中的 Bean 作用域”展开&#xff0c;结合典型面试题及实战场景&#xff0c;帮你厘清重点&#xff0c;打破模板式回答&#xff0c…...