当前位置: 首页 > news >正文

代码讲解系列-CV(五)——语义分割基础

文章目录

  • 一、图像分割标注
    • 1.1 Labelme标注
    • 1.2 SAM辅助
    • 1.3 json格式
  • 二、数据解析
    • 2.1 Dataset
    • 2.2 train.py
      • 2.2.1 取参
      • 2.2.2 分割和数据集的读取
  • 三、Unet网络搭建
    • 3.1 Unet
    • 3.2 Network
  • 四、损失函数和指标
    • 4.1 DICE系数
    • 4.2 损失函数
    • 4.3 半精度训练
  • 五、SAM
  • 六、作业

语义分割是图片下进行分割出所检测的目标,而实例分割就是更进一步,对分割出来的图像进行分组。
数据集:https://www.kaggle.com/competitions/carvana-image-masking-challenge/
是在kaggle上的数据集

一、图像分割标注

1.1 Labelme标注

与上一次一样
在这里插入图片描述
但是由于有些更精细的目标需要更精确的边界,所以需要SAM进行辅助。

1.2 SAM辅助

  1. edit-创建AI多边形
  2. 等待SAM模型下载完成
  3. 点击鼠标添加query点
  4. 保存
    在这里插入图片描述

1.3 json格式

可以通过json里面的点,输出成mask。
在这里插入图片描述
就是像这样

二、数据解析

2.1 Dataset

读取image-mask对。总体就是对于,mask和image进行配对,并且对于image进项下采样,因为实际上,我们用不到这么高清晰度的情况(所以设置成scale)
在这里插入图片描述
下面这就是图像预处理
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述

2.2 train.py

训练脚本

amp就是为了优化显存和速度

2.2.1 取参

在这里插入图片描述

2.2.2 分割和数据集的读取

在这里插入图片描述

三、Unet网络搭建

3.1 Unet

Unet是比较早做语义分割的
U-Net: Convolutional Networks for Biomedical Image Segmentation
https://arxiv.org/abs/1505.04597
在这里插入图片描述
下面就是根据图,复现Unet

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

tqdm就是进度条


3.2 Network

组件
在这里插入图片描述
模型
在这里插入图片描述

四、损失函数和指标

4.1 DICE系数

跟IOU很像

Dice 系数是一种衡量两个集合相似度的指标,在图像分割任务中用于评估分割结果与真实标签的相似程度
在这里插入图片描述
缺点:对边界噪声较敏感(边界不精确可能显著降低 Dice 系数)
在这里插入图片描述

4.2 损失函数

交叉熵损失+DICE损失
在这里插入图片描述

4.3 半精度训练

在这里插入图片描述

五、SAM

https://github.com/facebookresearch/segment-anything
在这里插入图片描述

六、作业

一、基于本课内容,搭建unet网络训练以下数据。
https://www.kaggle.com/competitions/carvana-image-masking-challenge/
二、尝试使用
SAM推理当前数据集。

相关文章:

代码讲解系列-CV(五)——语义分割基础

文章目录 一、图像分割标注1.1 Labelme标注1.2 SAM辅助1.3 json格式 二、数据解析2.1 Dataset2.2 train.py2.2.1 取参2.2.2 分割和数据集的读取 三、Unet网络搭建3.1 Unet3.2 Network 四、损失函数和指标4.1 DICE系数4.2 损失函数4.3 半精度训练 五、SAM六、作业 语义分割是图片…...

在mfc中使用自定义三维向量类和计算多个三维向量的平均值

先添加一个普通类, Vector3.h, // Vector3.h: interface for the Vector3 class. // //#if !defined(AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_) #define AFX_VECTOR3_H__53D34D26_95FF_4377_BD54_57F4271918A4__INCLUDED_#if _MSC_VER > 1000 #p…...

RDMA ibverbs_API功能说明

设备管理 获取当前活动网卡 返回当前rdma设备列表 struct ibv_device **ibv_get_device_list(int *num_devices);//使用 struct ibv_device **dev_list ibv_get_device_list(NULL);获取网卡名 返回网卡名字字符串:如"mlx5_0",一般通过网卡…...

【C++语言】string 类

一、为什么要学习 string 类 C语言中,字符串是以 “\0” 结尾的一些字符的集合,为了操作方便,C标准库中提供了一些 str 系列的库函数,但是这些库函数与字符串是分离开的,不太符合 OOP 的思想,而且底层空间需…...

快速上手gdb/cgdb

Linux调试器-gdb使用 1.背景2.调试原理、技巧命令2.1指令2.2 本质2.3 技巧 1.背景 程序的发布方式有两种,debug模式和release模式 Linux gcc/g出来的二进制程序,默认是release模式 要使用gdb调试,必须在源代码生成二进制程序的时候, 加上 -g…...

《养生》(二)

一、基础生活调整 1‌.作息规律‌ 固定每天7-8小时睡眠,尽量22:30前入睡,晨起后拉开窗帘晒太阳5分钟,调节生物钟‌ ‌2.饮食优化‌ 三餐定时,每餐细嚼慢咽20次以上,优先吃蔬菜和蛋白质(如鸡蛋、豆腐&#x…...

JAVA:集成 Drools 业务规则引擎的技术指南

1、简述 Drools 是一个强大的业务规则引擎,适用于需要动态决策或规则管理的场景。它允许开发人员将业务逻辑与应用代码分离,使得业务人员可以通过规则文件维护和更新规则,而无需修改应用代码。本文将介绍 Drools 的基本概念、配置方式&#…...

GeoHD - 一种用于智慧城市热点探测的Python工具箱

GeoHD - 一种用于智慧城市热点探测的Python工具箱 详细原理请参考:Yan, Y., Quan, W., Wang, H., 2024. A data‐driven adaptive geospatial hotspot detection approach in smart cities. Trans. GIS tgis.13137. 代码下载:下载 1. 简介 在城市数据…...

记一次Ngnix配置

记一次Ngnix配置 配置Ngnix配置防火墙 假设一个服务器中有一个公网IP、一个内网IP,另外已经部署好后台服务的接口地址为http://内网ip:8088。 配置Ngnix 找到Ngnix的配置文件,通过在Ngnix的安装路径下的 \conf\nginx.conf 文件。 worker_processes 1;…...

2024年国赛高教杯数学建模C题农作物的种植策略解题全过程文档及程序

2024年国赛高教杯数学建模 C题 农作物的种植策略 原题再现 根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济的可持续发展具有重要的现实意义。选择适宜的农作物,优化种植策略&…...

java基础语知识(8)

类之间的关系 在类之间,最常见的关系有: 依赖(“uses-a”);聚合(“has-a”);继承(“is-a”)。 依赖:一种使用关系,即一个类的实现需要另一个类的协助&#x…...

室内定位精度方案对比

室内定位精度方案对比:成本、开发难度与精度的权衡 索引 引言 Wi-Fi 定位方案 定位原理 成本分析 开发难度 定位精度 蓝牙定位方案 定位原理 成本分析 开发难度 定位精度 超宽带(UWB)定位方案 定位原理 成本分析 开发难度 定…...

Pytorch深度学习教程_5_编写第一个神经网络

欢迎来到《pytorch深度学习教程》系列的第五篇!在前面的四篇中,我们已经介绍了Python、numpy及pytorch的基本使用,并在上一个教程中介绍了梯度。今天,我们将探索神经网络,对于神经网络进行概述并进行简单的实践学习 欢…...

ImportError: cannot import name ‘FixtureDef‘ from ‘pytest‘

错误信息表明 pytest 在尝试导入 FixtureDef 时出现了问题。通常是由于 pytest 版本不兼容 或 插件版本冲突 引起的。以下是详细的排查步骤和解决方案: 1. 检查 pytest 版本 首先,确认当前安装的 pytest 版本。某些插件可能需要特定版本的 pytest 才能…...

改BUG:Mock测试的时候,when失效

问题再现: 这里我写了一测试用户注册接口的测试类,并通过when模拟下层的服务,但实际上when并没有奏效,还是走了真实的service层的逻辑。 package cn.ac.evo.review.test;import cn.ac.evo.review.user.UserMainApplication; imp…...

【自动化脚本工具】AutoHotkey (Windows)

目录 1. 介绍AutoHotkey2. 功能脚本集锦2.1 桌面键盘显示 1. 介绍AutoHotkey 支持Windows安装使用,下载地址为:https://www.autohotkey.com/ 2. 功能脚本集锦 2.1 桌面键盘显示 便于练习键盘盲打 脚本地址:https://blog.csdn.net/weixin_6…...

专题--Linux体系

Linux体系结构相关| ProcessOn免费在线作图,在线流程图,在线思维导图 ProcessOn是一个在线协作绘图平台,为用户提供强大、易用的作图工具!支持在线创作流程图、思维导图、组织结构图、网络拓扑图、BPMN、UML图、UI界面原型设计、iOS界面原型设计等。同时…...

【DeepSeek】Mac m1电脑部署DeepSeek

一、电脑配置 个人电脑配置 二、安装ollama 简介:Ollama 是一个强大的开源框架,是一个为本地运行大型语言模型而设计的工具,它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运…...

Spring AI + Ollama 实现调用DeepSeek-R1模型API

一、前言 随着人工智能技术的飞速发展,大语言模型(LLM)在各个领域的应用越来越广泛。DeepSeek 作为一款备受瞩目的国产大语言模型,凭借其强大的自然语言处理能力和丰富的知识储备,迅速成为业界关注的焦点。无论是文本生…...

如何在本地和服务器新建Redis用户和密码

文章目录 一. Redis安装二. 新建Redis用户,测试连接2.1 本地数据库2.2 线上数据库2.2.1 安装和配置2.2.2 测试连接 三. 配置四. 分布式 一. Redis安装 Redis安装 可以设置开机自动启动,也可以在去查看系统服务,按[win R],输入命…...

vscode里如何用git

打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

MySQL 隔离级别:脏读、幻读及不可重复读的原理与示例

一、MySQL 隔离级别 MySQL 提供了四种隔离级别,用于控制事务之间的并发访问以及数据的可见性,不同隔离级别对脏读、幻读、不可重复读这几种并发数据问题有着不同的处理方式,具体如下: 隔离级别脏读不可重复读幻读性能特点及锁机制读未提交(READ UNCOMMITTED)允许出现允许…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...

C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)

名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...

关于easyexcel动态下拉选问题处理

前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...

热烈祝贺埃文科技正式加入可信数据空间发展联盟

2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...