Debezium:实时数据捕获与同步的利器
一、什么是 Debezium
Debezium 是一个开源的分布式平台,专门用于捕获数据库中的数据变更。它通过读取数据库的事务日志,能够以非侵入性的方式捕获数据库中发生的所有变化,并将这些变化转化为事件流,实时推送到像 Kafka 这样的消息系统中。这种方式不仅解决了数据同步的问题,还为构建事件驱动架构和实时分析系统提供了基础。
二、Debezium 的架构
1. 核心组件
数据库连接器(Connector):连接并监听源数据库的事务日志,捕获数据的插入、更新、删除操作。
Kafka Connect:一个用于数据集成的分布式平台,负责协调和管理 Debezium 连接器,处理数据流的输入输出。
Kafka topic:作为 Debezium 输出的主要目标,数据变更事件被发送到 Kafka 的各个主题中,供下游消费者实时消费。
Schema Registry(可选):用于管理数据模式的演化,确保 Kafka 中的数据事件结构的一致性和版本控制。
2. 部署方式
- Kafka Connect 模式:这是最常见的部署方式。Debezium 通过 Kafka Connect 将数据变更事件推送到 Kafka。
- Debezium Server:一个可配置的、开箱即用的应用程序,可以将源数据库流式变化事件同步到各种不同的消息基础设施。
- 嵌入式引擎:在这种情况下,Debezium 作为一个嵌入到定制 Java 应用程序中的库运行。
三、Debezium 的功能特性
- 实时性
Debezium 提供了对数据库变更的低延迟捕获,数据变化几乎可以实时传递到目标系统中。 - 非侵入式架构
Debezium 通过读取数据库的事务日志来捕获数据变化,这意味着它不会干扰现有的数据库操作。 - 分布式架构与扩展性
Debezium 运行在 Kafka Connect 之上,这使它能够充分利用 Kafka 的分布式架构,保证系统的高可用性和扩展性。 - 支持复杂的数据模式演化
Debezium 可以与 Schema Registry 集成,管理数据模式的演化问题,确保数据消费者与数据生产者之间的兼容性。 - 快照机制
Debezium 在首次启动时会自动执行一个快照,抓取表中的所有现有记录,并将其作为插入事件发布到 Kafka 中。
四、使用场景
1. 实时数据复制和同步
使用 Debezium,可以在不同的数据库或系统之间进行实时数据复制。
2. 事件驱动架构
Debezium 可以将数据库中的每次变化事件发布到消息队列(如 Kafka),这为构建事件驱动架构奠定了基础。
3. 实时分析与数据管道
在需要实时数据分析的场景中,Debezium 可以作为数据管道的入口,将数据实时传输到数据湖、数据仓库或流处理框架中。
4. 缓存刷新
对于使用缓存层(如 Redis)的应用系统,Debezium 能够实时捕获数据库的变更,从而触发缓存的更新或刷新。
五、总结
Debezium 作为一个强大的变更数据捕获(CDC)平台,广泛应用于数据同步、事件驱动架构、实时分析和缓存刷新等场景。它通过捕获数据库的实时变更,为企业实现实时数据集成和分析提供了有力支持。无论是需要实时数据复制、构建事件驱动架构,还是进行实时数据分析,Debezium 都是一个值得信赖的选择。
相关文章:
Debezium:实时数据捕获与同步的利器
一、什么是 Debezium Debezium 是一个开源的分布式平台,专门用于捕获数据库中的数据变更。它通过读取数据库的事务日志,能够以非侵入性的方式捕获数据库中发生的所有变化,并将这些变化转化为事件流,实时推送到像 Kafka 这样的消息…...

Word中接入大模型教程
前言 为什么要在word中接入大模型呢? 个人觉得最大的意义就是不用来回切换与复制粘贴了吧。 今天分享一下昨天实践的在word中接入大模型的教程。 在word中接入大模型最简单的方式就是使用vba。 vba代码要做的事,拆分一下就是: 获取用户…...

Centos修改ip
1 查看ip [rootlocalhost ~]# ip addr2 root账号修改ip [rootlocalhost ~]# su [rootlocalhost ~]# cd /etc/sysconfig/network-scripts/ [rootlocalhost network-scripts]# llvi编辑ifcfg-ens33 3 重启网卡 [rootlocalhost network-scripts]# systemctl restart network...

uni-app小程序开发 基础知识2
目标: 构建一个文章发表平台。 我们先来写一个静态框架。 以下是 首页初代码文章列表页代码: <template><view class"content"><!-- 轮播图 --><swiper class"swiper-container" autoplay"true"…...

第4章 4.1 Entity Framework Core概述
4.1.1 什么是ORM ORM (object tralstional mapping ,对象关系映射)中的“对象”指的就是C#中的对象,而“关系”是关系型数据库,“映射”指搭建数据库与C#对象之间的“桥梁”。 比如使用ORM ,可以通过创建C#对象的方式把数据插入数据库而不需…...
在 Spring Boot 中使用 `@Autowired` 和 `@Bean` 注解
文章目录 在 Spring Boot 中使用 Autowired 和 Bean 注解示例背景 1. 定义 Student 类2. 配置类:初始化 Bean3. 测试类:使用 Autowired 注解自动注入 Bean4. Spring Boot 的自动装配5. 总结 在 Spring Boot 中使用 Autowired 和 Bean 注解 在 Spring Bo…...
Langchain vs. LlamaIndex:哪个在集成MongoDB并分析资产负债表时效果更好?
Langchain vs. LlamaIndex:哪个在集成MongoDB并分析资产负债表时效果更好? 随着大语言模型(LLM)在实际应用中的普及,许多开发者开始寻求能够帮助他们更高效地开发基于语言模型的应用框架。在众多框架中,La…...
Java 中的内存泄漏问题及解决方案
在 Java 中,内存泄漏(Memory Leak)是指在程序运行过程中,某些对象已经不再使用,但由于引用仍然存在,这些对象无法被垃圾回收器回收,从而导致内存无法释放,最终可能导致系统性能下降甚…...

VS Code 如何搭建C/C++开发环境
目录 1.VS Code是什么 2. VS Code的下载和安装 2.1 下载和安装 2.2.1 下载 2.2.2 安装 2.2 环境的介绍 2.3 安装中文插件 3. VS Code配置C/C开发环境 3.1 下载和配置MinGW-w64编译器套件 3.1.1 下载 3.1.2 配置 3.2 安装C/C插件 3.3 重启VSCode 4. 在VSCode上编写…...
【Linux C/C++开发】Linux系统轻量级的队列缓存mqueue
前言 开发设计时,通常会对业务流程进行模块化,有些流程之间,不要求同步,但又需要传递信息时,如果存储到数据库,效率降低很多,如果是存放在内存是最好的。此时可以选择系统的IPC(进程…...

排查生产sql查询缓慢
生产投产检验,发现查询客户明细的接口数据响应需要5秒以上,通过接口可以查询到详细的后端代码 1. 先排查后端的代码实现,并未出现复杂逻辑,那么就应该是sql的问题 2. 通过explain对sql进行解析,发现sql没有走索引 3.…...

idea从远程gitee拉取项目
文章目录 从gitee上面拿到项目地址填写远程地址,并且设置项目保存位置拉取成功 从gitee上面拿到项目地址 填写远程地址,并且设置项目保存位置 拉取成功...

【UCB CS 61B SP24】Lecture 5 - Lists 3: DLLists and Arrays学习笔记
本文内容为构建双向循环链表、使用 Java 的泛型将其优化为通用类型的链表以及数组的基本语法介绍。 1. 双向链表 回顾上一节课写的代码,当执行 addLast() 与 getLast() 方法时需要遍历链表,效率不高,因此可以添加一个指向链表末尾的索引&am…...
软件测试与软件开发之间的关系
软件测试与软件开发的关系 软件测试(Software Testing)与软件开发(Software Development)是软件工程中的两个核心环节,它们相辅相成,确保软件的质量和功能满足需求。以下是两者之间的关系解析:…...
QT 建立一片区域某种颜色
绘制一个位于(50, 50)的200x200的红色矩形 #include "widget.h" #include "ui_widget.h" #include <QPainter>Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this);update(); }Widget::~Widget() {delete…...
LeetCode--23. 合并 K 个升序链表【堆和分治】
23. 合并 K 个升序链表 给你一个链表数组,每个链表都已经按升序排列。 请你将所有链表合并到一个升序链表中,返回合并后的链表。 正文 这道题有多种解决方案 堆 比较容易,又比较直观的就是堆排序,将每个节点加入最小根堆中&…...
tp6上传文件大小超过了最大值+验证文件上传大小和格式函数
问题: 最近用tp6的文件上传方法上传文件时报文件过大错误。如下所示: $file $this->request->file(file);{"code": 1,"msg": "上传文件大小超过了最大值!","data": {"code": 1,&q…...

解决 Mac 只显示文件大小,不显示目录大小
前言 在使用 mac 的时候总是只显示文件的大小,不显示文件夹的大小,为了解决问题可以开启“计算文件夹”。 步骤 1.进入访达 2.工具栏点击“显示”选项,点击 “查看显示选项” 3.勾选 显示“资源库"文件夹 和 计算所有大小 或者点击…...

分布式大语言模型服务引擎vLLM论文解读
论文地址:Efficient Memory Management for Large Language Model Serving with PagedAttention 摘要 大语言模型(LLMs)的高吞吐量服务需要一次对足够多的请求进行批处理。然而,现有系统面临困境,因为每个请求的键值…...

快速入门——Vue框架快速上手
学习自哔哩哔哩上的“刘老师教编程”,具体学习的网站为:8.Vue框架快速上手_哔哩哔哩_bilibili,以下是看课后做的笔记,仅供参考。 第一节:前端环境准备 编码工具VSCode【www.code.visualstudio.com】/WebStorm也可&am…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...

MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
【Go】3、Go语言进阶与依赖管理
前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课,做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程,它的核心机制是 Goroutine 协程、Channel 通道,并基于CSP(Communicating Sequential Processes࿰…...

Springcloud:Eureka 高可用集群搭建实战(服务注册与发现的底层原理与避坑指南)
引言:为什么 Eureka 依然是存量系统的核心? 尽管 Nacos 等新注册中心崛起,但金融、电力等保守行业仍有大量系统运行在 Eureka 上。理解其高可用设计与自我保护机制,是保障分布式系统稳定的必修课。本文将手把手带你搭建生产级 Eur…...
浅谈不同二分算法的查找情况
二分算法原理比较简单,但是实际的算法模板却有很多,这一切都源于二分查找问题中的复杂情况和二分算法的边界处理,以下是博主对一些二分算法查找的情况分析。 需要说明的是,以下二分算法都是基于有序序列为升序有序的情况…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比
在机器学习的回归分析中,损失函数的选择对模型性能具有决定性影响。均方误差(MSE)作为经典的损失函数,在处理干净数据时表现优异,但在面对包含异常值的噪声数据时,其对大误差的二次惩罚机制往往导致模型参数…...