【并发编程】Java并发编程核心包
1、简介
java.util.concurrent
是 Java 并发编程的核心包,提供了丰富的工具和框架来支持多线程编程、并发任务执行、线程安全集合、同步机制等。
2、线程池Thread Pool
线程池是并发编程中最重要的工具之一,用于管理和复用线程,避免频繁创建和销毁线程的开销。
最顶层接口Executor,核心接口ExecutorService
2.1、主要类
工厂类(Executors)
工厂类Executors提供了创建线程池的静态方法。
-
newFixedThreadPool(int nThreads)
:创建固定大小的线程池。 -
newCachedThreadPool()
:创建可缓存的线程池,线程数根据需要动态调整。 -
newSingleThreadExecutor()
:创建单线程的线程池。 -
newScheduledThreadPool(int corePoolSize)
:创建支持定时任务的线程池。
package com.mqtt.mqttproject.test;import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;/*** @ Author : Gridsum* @ Description :*/
public class ThreadPoolExample {public static void main(String[] args) {ExecutorService executor = Executors.newFixedThreadPool(2);for (int i = 0; i< 5; i++){executor.submit(()->{System.out.println("任务执行" + Thread.currentThread().getName());});}executor.shutdown(); //关闭线程池}
}
核心接口(ExecutorService)
ExecutorService接口提供了提供了线程池的管理方法。
ExecutorService接口常用实现类
2.2、ThreadPoolExecutor
public ThreadPoolExecutor(int corePoolSize, //核心线程数int maximumPoolSize, //最大线程数long keepAliveTime, //线程空闲时间TimeUnit unit, //时间单位BlockingQueue<Runnable> workQueue, //队列ThreadFactory threadFactory, //线程工厂RejectedExecutionHandler handler//拒绝策略) {if (corePoolSize < 0 ||maximumPoolSize <= 0 ||maximumPoolSize < corePoolSize ||keepAliveTime < 0)throw new IllegalArgumentException();if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;}
2.2.1、线程池执行顺序
当线程数小于核心线程数时,创建线程。
当线程数大于等于核心线程数,且任务队列未满时,将任务放入任务队列。
当线程数大于等于核心线程数,且任务队列已满,若线程数小于最大线程数,创建线程。
若线程数等于最大线程数,则执行拒绝策略
2.2.2、workQueue
(1)无界队列
队列大小无限制,常用的为无界的LinkedBlockingQueue,使用该队列作为阻塞队列时要尤其当心,当任务耗时较长时可能会导致大量新任务在队列中堆积最终导致OOM。阅读代码发现,Executors.newFixedThreadPool 采用就是 LinkedBlockingQueue,而博主踩到的就是这个坑,当QPS很高,发送数据很大,大量的任务被添加到这个无界LinkedBlockingQueue 中,导致cpu和内存飙升服务器挂掉。
当然这种队列,maximumPoolSize 的值也就无效了。当每个任务完全独立于其他任务,即任务执行互不影响时,适合于使用无界队列;例如,在 Web 页服务器中。这种排队可用于处理瞬态突发请求,当命令以超过队列所能处理的平均数连续到达时,此策略允许无界线程具有增长的可能性。
(2)有界队列
当使用有限的 maximumPoolSizes 时,有界队列有助于防止资源耗尽,但是可能较难调整和控制。常用的有两类,一类是遵循FIFO原则的队列如ArrayBlockingQueue,另一类是优先级队列如PriorityBlockingQueue。PriorityBlockingQueue中的优先级由任务的Comparator决定。
使用有界队列时队列大小需和线程池大小互相配合,线程池较小有界队列较大时可减少内存消耗,降低cpu使用率和上下文切换,但是可能会限制系统吞吐量。
(3)同步移交队列
如果不希望任务在队列中等待而是希望将任务直接移交给工作线程,可使用SynchronousQueue作为等待队列。SynchronousQueue不是一个真正的队列,而是一种线程之间移交的机制。要将一个元素放入SynchronousQueue中,必须有另一个线程正在等待接收这个元素。只有在使用无界线程池或者有饱和策略时才建议使用该队列。
2.2.3、threadFactory
线程工厂,用来创建线程, 为了统一在创建线程时设置一些参数,如是否守护线程,线程一些特性等,如优先级。通过这个TreadFactory创建出来的线程能保证有相同的特性。
它是一个接口类,而且方法只有一个,就是创建一个线程。如果没有另外说明,则在同一个ThreadGroup 中一律使用Executors.defaultThreadFactory() 创建线程,并且这些线程具有相同的NORM_PRIORITY 优先级和非守护进程状态。
通过提供不同的 ThreadFactory,可以改变线程的名称、线程组、优先级、守护进程状态,等等。
如果从newThread 返回 null 时ThreadFactory 未能创建线程,则执行程序将继续运行,但不能执行任何任务。
2.2.4、ThreadPoolExecutor执行逻辑
创建ThreadPoolExecutor实例对象->execute()/submit()->addWorker->runWorker->getTask
package com.mqtt.mqttproject.test;import java.util.concurrent.*;/*** @ Author : Gridsum* @ Description :*/
public class ThreadPoolExample {public static void main(String[] args) {LinkedBlockingDeque linkedBlockingDeque = new LinkedBlockingDeque(10);ThreadFactory threadFactory = Executors.defaultThreadFactory();RejectedExecutionHandler rejectedExecutionHandler = new ThreadPoolExecutor.AbortPolicy();ExecutorService executor = new ThreadPoolExecutor(5,10,1000,TimeUnit.MILLISECONDS,linkedBlockingDeque, threadFactory,rejectedExecutionHandler);//如果不需要获取任务执行结果,调用execute方法executor.execute(()->{System.out.println("开始执行任务" + Thread.currentThread().getName());});//如果需要返回任务执行结果,调用submit方法Future<String> future = executor.submit(()->{Thread.sleep(3000);System.out.println("开始执行任务" + Thread.currentThread().getName());return "执行成功";});//添加回调addCallback(future, result -> {System.out.println("回调结果:" + result);});System.out.println("执行其他任务,不需要等待回调结果");executor.shutdown();}public interface Callback{void onComplate(String result);}public static void addCallback(Future<String> future, Callback callback){new Thread(()->{try {callback.onComplate(future.get());} catch (InterruptedException e) {e.printStackTrace();} catch (ExecutionException e) {e.printStackTrace();}}).start();}}
执行结果
ThreadPoolExecutor核心维护了一个HashSet<Worker>类型的 workers,用来存放线程,维护了BlockingQueue<Runnable> workQueue 队列,存放需要执行的任务task,启动workers中的线程执行workQueue队列中task。
public void execute(Runnable command) {if (command == null)throw new NullPointerException();int c = ctl.get();//workerCountOf获取线程池的当前线程数;小于corePoolSize,执行addWorker创建新线程执行command任务if (workerCountOf(c) < corePoolSize) {if (addWorker(command, true))return;c = ctl.get();}if (isRunning(c) && workQueue.offer(command)) {int recheck = ctl.get();if (! isRunning(recheck) && remove(command))reject(command);else if (workerCountOf(recheck) == 0)addWorker(null, false);}else if (!addWorker(command, false))reject(command);}
private boolean addWorker(Runnable firstTask, boolean core) {retry:for (int c = ctl.get();;) {// Check if queue empty only if necessary.if (runStateAtLeast(c, SHUTDOWN)&& (runStateAtLeast(c, STOP)|| firstTask != null|| workQueue.isEmpty()))return false;for (;;) {if (workerCountOf(c)>= ((core ? corePoolSize : maximumPoolSize) & COUNT_MASK))return false;if (compareAndIncrementWorkerCount(c))break retry;c = ctl.get(); // Re-read ctlif (runStateAtLeast(c, SHUTDOWN))continue retry;// else CAS failed due to workerCount change; retry inner loop}}boolean workerStarted = false;boolean workerAdded = false;Worker w = null;try {w = new Worker(firstTask);final Thread t = w.thread;if (t != null) {final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.int c = ctl.get();if (isRunning(c) ||(runStateLessThan(c, STOP) && firstTask == null)) {if (t.isAlive()) // precheck that t is startablethrow new IllegalThreadStateException();workers.add(w);int s = workers.size();if (s > largestPoolSize)largestPoolSize = s;workerAdded = true;}} finally {mainLock.unlock();}if (workerAdded) {t.start();workerStarted = true;}}} finally {if (! workerStarted)addWorkerFailed(w);}return workerStarted;}
Worker类的runworker方法
private final class Worker extends AbstractQueuedSynchronizer implements Runnable{Worker(Runnable firstTask) {setState(-1); // inhibit interrupts until runWorkerthis.firstTask = firstTask;this.thread = getThreadFactory().newThread(this); // 创建线程}/** Delegates main run loop to outer runWorker */public void run() {runWorker(this);}// ...}
runWorker方法是线程池的核心:
线程启动之后,通过unlock方法释放锁,设置AQS的state为0,表示运行可中断;
Worker执行firstTask或从workQueue中获取任务:
进行加锁操作,保证thread不被其他线程中断(除非线程池被中断)
检查线程池状态,倘若线程池处于中断状态,当前线程将中断。
执行beforeExecute
执行任务的run方法
执行afterExecute方法
解锁操作
通过getTask方法从阻塞队列中获取等待的任务,如果队列中没有任务,getTask方法会被阻塞并挂起,不会占用cpu资源;
final void runWorker(Worker w) {Thread wt = Thread.currentThread();Runnable task = w.firstTask;w.firstTask = null;w.unlock(); // allow interruptsboolean completedAbruptly = true;try {while (task != null || (task = getTask()) != null) {w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interruptif ((runStateAtLeast(ctl.get(), STOP) ||(Thread.interrupted() &&runStateAtLeast(ctl.get(), STOP))) &&!wt.isInterrupted())wt.interrupt();try {beforeExecute(wt, task);try {task.run();afterExecute(task, null);} catch (Throwable ex) {afterExecute(task, ex);throw ex;}} finally {task = null;w.completedTasks++;w.unlock();}}completedAbruptly = false;} finally {processWorkerExit(w, completedAbruptly);}}
getTask方法:
private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?for (;;) {int c = ctl.get();// Check if queue empty only if necessary.if (runStateAtLeast(c, SHUTDOWN)&& (runStateAtLeast(c, STOP) || workQueue.isEmpty())) {decrementWorkerCount();return null;}int wc = workerCountOf(c);// Are workers subject to culling?boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;if ((wc > maximumPoolSize || (timed && timedOut))&& (wc > 1 || workQueue.isEmpty())) {if (compareAndDecrementWorkerCount(c))return null;continue;}try {Runnable r = timed ?workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :workQueue.take();if (r != null)return r;timedOut = true;} catch (InterruptedException retry) {timedOut = false;}}}
3、Future和Callable
Future
和 Callable
用于表示异步任务的结果。
主要类:
Callable<V>,类似于 Runnable
,但可以返回结果或抛出异常
Future<V>,表示异步计算的结果,提供了检查任务是否完成、获取结果、取消任务等方法。
FutureTask<V>,Future接口的实现类,可以包装 Callable
或 Runnable
详细可以查看上一篇文章:并发编程Future和Callback使用
4、并发集合
java.util.concurrent
提供了线程安全的集合类,适用于多线程环境。
4.1、ConcurrentHashMap
ConcurrentHashMap主要是在多线程情况下提升了性能。
详细查看另一篇内容:HashMap到ConcurrentHashMap原理
5、同步工具
提供了一些高级同步工具,用于控制线程之间的协作。
CountDownLatch:
允许一个或多个线程等待其他线程完成操作。CyclicBarrier:
让一组线程互相等待,直到所有线程都到达某个屏障点。Semaphore:
控制同时访问某个资源的线程数量。Phaser:
更灵活的同步工具,支持分阶段的线程同步。
import java.util.concurrent.CountDownLatch;public class CountDownLatchExample {public static void main(String[] args) throws InterruptedException {CountDownLatch latch = new CountDownLatch(3);for (int i = 0; i < 3; i++) {new Thread(() -> {System.out.println("子线程执行: " + Thread.currentThread().getName());latch.countDown();}).start();}latch.await(); // 主线程等待所有子线程完成System.out.println("所有子线程执行完毕!");}
}
6、原子变量
提供了一组原子操作类,用于实现无锁的线程安全编程。
AtomicInteger:
支持原子操作的整数。AtomicLong:
支持原子操作的长整数。AtomicReference<V>:
支持原子操作的引用类型。
import java.util.concurrent.atomic.AtomicInteger;public class AtomicExample {public static void main(String[] args) {AtomicInteger counter = new AtomicInteger(0);counter.incrementAndGet(); // 原子递增System.out.println("Counter: " + counter.get());}
}
7、锁(Locks)
提供了更灵活的锁机制,替代传统的 synchronized
关键字。
ReentrantLock:
可重入锁,支持公平锁和非公平锁。ReadWriteLock:
读写锁,允许多个读线程同时访问,但写线程独占。实现类ReentrantReadWriteLock
import java.util.concurrent.locks.ReentrantLock;public class LockExample {public static void main(String[] args) {ReentrantLock lock = new ReentrantLock();lock.lock(); // 加锁try {System.out.println("锁保护的代码块");} finally {lock.unlock(); // 释放锁}}
}
8、定时任务
支持定时或周期性任务的执行。
ScheduledExecutorService
支持定时任务的线程池接口,实现类ScheduledThreadPoolExecutor
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;public class ScheduledTaskExample {public static void main(String[] args) {ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1);scheduler.scheduleAtFixedRate(() -> {System.out.println("定时任务执行: " + System.currentTimeMillis());}, 0, 1, TimeUnit.SECONDS); // 初始延迟 0 秒,每隔 1 秒执行一次}
}
9、Fork/Join 框架
用于并行执行任务的框架,适用于分治算法。
ForkJoinPool:
用于执行ForkJoinTask
的线程池。RecursiveTask<V>:
用于有返回值的任务。RecursiveAction:
用于无返回值的任务。
import java.util.concurrent.RecursiveTask;
import java.util.concurrent.ForkJoinPool;public class ForkJoinExample {public static void main(String[] args) {ForkJoinPool pool = new ForkJoinPool();int result = pool.invoke(new FibonacciTask(10));System.out.println("Fibonacci(10) = " + result);}static class FibonacciTask extends RecursiveTask<Integer> {private final int n;FibonacciTask(int n) {this.n = n;}@Overrideprotected Integer compute() {if (n <= 1) return n;FibonacciTask task1 = new FibonacciTask(n - 1);task1.fork();FibonacciTask task2 = new FibonacciTask(n - 2);return task2.compute() + task1.join();}}
}
相关文章:

【并发编程】Java并发编程核心包
1、简介 java.util.concurrent 是 Java 并发编程的核心包,提供了丰富的工具和框架来支持多线程编程、并发任务执行、线程安全集合、同步机制等。 2、线程池Thread Pool 线程池是并发编程中最重要的工具之一,用于管理和复用线程,避免频繁创…...
Unity 淡入淡出
淡入(Fade in):类似打开幕布 淡出(Fade out):类似关上幕布 方案一 使用Dotween(推荐) using DG.Tweening; using UnityEngine; using UnityEngine.UI;public class Test : MonoB…...

完整的 LoRA 模型训练步骤:如何使用 Kohya_ss 进行 LoRA 训练
完整的 LoRA 模型训练步骤:如何使用 Kohya_ss 进行 LoRA 训练 一、环境配置1. 安装 Python 和虚拟环境2. 克隆 Kohya_ss 仓库3. 安装依赖4. 启动 GUI lora训练1. 准备数据 图片处理打标签2. 配置 LoRA 训练2.2 配置图片文件夹和输出目录 训练解决方法: 使…...

视觉分析之边缘检测算法
9.1 Roberts算子 Roberts算子又称为交叉微分算法,是基于交叉差分的梯度算法,通过局部差分计算检测边缘线条。 常用来处理具有陡峭的低噪声图像,当图像边缘接近于正45度或负45度时,该算法处理效果更理想。 其缺点是对边缘的定位…...

git输错用户名或者密码
git push时候跳出window弹窗,输入用户名和密码,如果错误,会有如下情况: $ git push -u origin “master” remote: [session-6c466aa6] rain: Incorrect username or password (access token) fatal: Authentication failed for ‘…...

【Unity Shader编程】之图元装配与光栅化
执行方式:自动完成 图元装配自动化流程 顶点坐标存入装配区 → 按绘制模式连接顶点 → 生成完整几何图元 示例:gl.drawArrays(gl.TRIANGLES, 0, 3)自动生成三角形 会自动自动裁剪超出屏幕范围(NDC空间外)的三角形,仅保…...

以ChatGPT为例解析大模型背后的技术
目录 1、大模型分类 2、为什么自然语言处理可计算? 2.1、One-hot分类编码(传统词表示方法) 2.2、词向量 3、Transformer架构 3.1、何为注意力机制? 3.2、注意力机制在 Transformer 模型中有何意义? 3.3、位置编…...

网页版的俄罗斯方块
1、新建一个txt文件 2、打开后将代码复制进去保存 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>俄…...
Linux运维_Dockerfile_打包Moby-26.1.4编译dockerd环境
Linux运维_Dockerfile_打包Moby-26.1.4编译dockerd环境 Dockerfile 是一个文本文件, 包含了构建 Docker 镜像的所有指令。 Dockerfile 是一个用来构建镜像的文本文件, 文本内容包含了一条条构建镜像所需的指令和说明。 通过定义一系列命令和参数, Dockerfile 指导 Docker 构…...

数据中心储能蓄电池状态监测管理系统 组成架构介绍
安科瑞刘鸿鹏 摘要 随着数据中心对供电可靠性要求的提高,蓄电池储能系统成为关键的后备电源。本文探讨了蓄电池监测系统在数据中心储能系统中的重要性,分析了ABAT系列蓄电池在线监测系统的功能、技术特点及其应用优势。通过蓄电池监测系统的实施&#…...
layui.table.exportFile 导出数据并清除单元格中的空格
Layui在执行数据导出的时候,会出现部分数据单元格中有空格的情况,下面的方法可以去除掉单元格中的空格,供大家参考!! function table_export(id,title) {//根据传入tableID获取表头var headers $("div[lay-id" id "] .layu…...
vue-指令
前端开发Vue的指令 Vue.js 提供了丰富的指令系统,用于扩展HTML的功能和行为。这些指令可以分为内置指令和自定义指令两大类。以下是对Vue.js中常见指令的详细解释和示例: 1. 内置指令 1.1 插值表达式 用法:{{ expression }}示例ÿ…...

跟着李沐老师学习深度学习(十三)
现代循环神经网络 循环神经网络中梯度异常在实践中的意义引发了一些问题: 早期观测值影响重大:早期观测值对预测所有未来观测值极为重要,如序列中第一个观测值包含校验和,需在序列末尾辨别其是否正确,若无特殊机制存…...
鸿蒙与跨端迁移的重要性
鸿蒙操作系统(HarmonyOS)是由华为公司开发的一款面向未来的全场景分布式操作系统。它旨在提供一个统一的平台,支持各种设备之间的无缝协作和数据共享,从而为用户提供更加连贯和高效的体验。在鸿蒙的生态系统中,跨端迁移…...

成员函数定义后面加const是什么功能:C++中const成员函数的作用
成员函数定义后面加const是什么功能:C中const成员函数的作用 前言C中const成员函数的作用总结 前言 在PX4的代码中的位置控制模块中,有这样一个成员函数 void getAttitudeSetpoint(vehicle_attitude_setpoint_s &attitude_setpoint) const;该函数的…...

QSNCTF-WEB做题记录
第一题,文章管理系统 来自 <天狩CTF竞赛平台> 描述:这是我们的文章管理系统,快来看看有什么漏洞可以拿到FLAG吧?注意:可能有个假FLAG哦 1,首先观察题目网站的结构和特征 这个一个文件管理系统&#x…...

UE引擎游戏加固方案解析
据VGinsights的报告,近年来UE引擎在过去几年中市场占比显著增长,其中亚洲市场增幅达到了30%,随着UE5的推出和技术的不断进步,UE引擎在独立开发者和移动游戏开发中的应用也在逐步增加。 UE引擎的优势在于强大的画面表现与视觉特效…...
统计函数运行时间的python脚本
这是一个统计函数运行时间的实用脚本,其中用到了函数的嵌套、链式传输参数,以及修饰器。 import time# 定义一个装饰器timer,用于计算被装饰函数的运行时间 def timer(func):print("执行了timer")def wrapper(*args, **kwargs):st…...

大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3)
大模型WebUI:Gradio全解11——使用transformers.agents构建Gradio UI(3) 前言本篇摘要11. 使用transformers.agents构建Gradio UI11.3 创建和使用工具Tools11.3.1 默认工具箱与load_tool11.3.2 创建新工具11.3.3 管理代理的工具箱toolbox11.3…...
spring boot知识点5
1.如何你有俩套配置环境,运行时如何选择 如果有俩套配置环境,则需要三个yml application.yml 用于配置你用那个配置环境 application-dev.yml 用于开发配置环境 application-prod.yml 用于发布配置环境 spring:profiles:active: prod # 指定当前激…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...

对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...

NFT模式:数字资产确权与链游经济系统构建
NFT模式:数字资产确权与链游经济系统构建 ——从技术架构到可持续生态的范式革命 一、确权技术革新:构建可信数字资产基石 1. 区块链底层架构的进化 跨链互操作协议:基于LayerZero协议实现以太坊、Solana等公链资产互通,通过零知…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作
一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...