当前位置: 首页 > news >正文

MinkowskiEngine安装(CUDA11.8+torch2.0.1+RTX4070TI)

1、背景

1)因为项目要用这个库:MinkowskiEngine,Minkowski Engine — MinkowskiEngine 0.5.3 documentation

然后就用了之前安装好 MinkowskiEngine 的torch1.8.1,cuda11.1的环境。

2)自己的代码出现cuda不支持torch用gpu进行矩阵运算的情况。

现象是可以跑大部分程序,查看GPU使用情况也会显示大部分显存被用着。

但torch.det/inverse等计算矩阵就报错:

MAGMA error: function-specific error, see documentation (10) in magma_sgetrf_gpu_expert at /opt/conda/conda-bld/magma-cuda111_1605822518874/work/src/sgetrf_gpu.cpp:126

inverse_matrix = torch.inverse(matrix)

RuntimeError: cusolver error: 7, when calling cusolverDnCreate(handle)

然后查了不少,装个依赖库和magma库解决不了问题。

移到cpu上不报错,但这个项目类似计算不少,还是从根源解决问题吧。

然后大部分都说是cuda和torch版本不匹配。

然后我系统装了12.1和11.1的cuda,改为12.1的时候的虚拟环境是不报错的。但MinkowskiEngine 不能支持太高版本的cuda,目前我能查到的是11.8装成功的案例。

最后查到了一个东西,说明就是cuda11.1版本太低了。

https://en.wikipedia.org/wiki/CUDA#GPUs_supported

总结就是40系的显卡,最低装CUDA11.8

2、修改过程

安装CUDA11.8,

可参考https://blog.csdn.net/2201_75663877/article/details/145207222

更新旧版本选择no,更新已有软连接选择no。不装driver,不选最后一项kernel(这个是加速计算的,但选了会报错)。

这个时候系统有好几个版本的CUDA了,使用update-alternatives工具管理,update-alternatives链接到/usr/local/cuda,update-alternatives加进来所有cuda,这样每次改alternative的选择就可以了。gcc我也只如此管理https://blog.csdn.net/SimpleForest/article/details/144018234。

CUDA的环境变量只设置/usr/local/cuda就够了。

安装好后创建虚拟环境过程不再赘述。

3、安装准备

和cuda版本匹配的gpu版的torch等。

说明一下的是,我在虚拟环境中和base中都装了OpenBLAS和ninja,用户系统环境之前装过。因为用到了,但不知道具体用的哪里的。但不想在这费功夫。

4、安装过程及问题解决

MinkowskiEngine在cuda11.8中成功安装_minkowskiengine 11.8-CSDN博客

以上过程很简单,但实际中一般都会报错。

我报错,查GPT好像是CUDA的问题,但虚拟环境我都设置了,并且设置对了。前人也能在11.8上装,torch是gpu版且与cuda版本也都对应。

然后去查源文件。打开setup.py

比较清楚:--cuda_home都是可以编译的时候在终端输入的,,我检查了其它设置没啥问题,也不用特意设置,

if not (CUDA_HOME is False): # False when not set, str otherwiseprint(f"Using CUDA_HOME={CUDA_HOME}")

这个安装过程终端没有打印,说明还是没get到CUDA_HOME,原因未知

然后安装命令最后手动加上了CUDA_HOME路径

python setup.py install --blas_include_dirs=${CONDA_PREFIX}/include --blas=openblas --cuda_home=/usr/local/cuda

如果电脑一般,中间可能会闪退,按照其它教程改小140多行的MAX_COMPILATION_THREADS = 12就行,我这里改为4.

然后虽然会有很多warning,最后还是安成了,python测试暂时没问题。

2025年2月20

相关文章:

MinkowskiEngine安装(CUDA11.8+torch2.0.1+RTX4070TI)

1、背景 1)因为项目要用这个库:MinkowskiEngine,Minkowski Engine — MinkowskiEngine 0.5.3 documentation 然后就用了之前安装好 MinkowskiEngine 的torch1.8.1,cuda11.1的环境。 2)自己的代码出现cuda不支持torch用gpu进行矩…...

Spring监听器Listener

目录 1、Spring监听器简介 2、事件(Event) 3、监听器(Listener) 3、事件发布器 4、监听器使用 4.1、自定义事件 4.2、自定义监听器 4.3、发布事件 4.4、测试 4.5、使用注解方式监听 4.6、异步事件处理 5、总结 1、Spri…...

【深度学习在图像配准中的应用与挑战】

图像配准在深度学习中的解决方案越来越多,尤其是通过卷积神经网络(CNN)和生成对抗网络(GAN)等方法,可以显著提升图像配准的效果,尤其是在处理复杂的非刚性变换和大范围的图像差异时。 1. 基于深…...

使用 Docker-compose 部署 MySQL

使用 Docker Compose 部署 MySQL 本文将详细指导如何使用 docker-compose 部署 MySQL,包括基本配置、启动步骤、数据持久化以及一些高级选项。通过容器化部署 MySQL,你可以快速搭建一个隔离的数据库环境,适用于开发、测试或小型生产场景。 关…...

blender笔记2

一、物体贴地 物体->变换->对齐物体 ->对齐弹窗(对齐模式:反方,相对于:场景原点,对齐:z)。 之后可以设置原点->原点--3d游标 二、面上有阴影 在编辑模式下操作过后,物体面有阴影。 数据-&g…...

特殊符号_符号图案_特殊符号大全

特殊符号↑返回顶部 © ℗ ร ಗ ย ☫ ౖ ஃ ⁜ ☊ ☋ ❡ ๑ ి ▧ ◘ ▩ ▣ ◙ ▨ ۞ ۩ ಔ ృ ☎ ☏ ⍝ ⍦ ▤ ▥ ▦ ✠ @ ۝ ಓ ↂ ూ ☮ ி ﺴ ✈ ✉ ✁ ✎ ✐ 〄 # ‡ ☪ ⌚ ☢ ▪ ▫ ✆ ✑ ✒ ☌ ❢ ▬ ☍ □ ■ ؟ ‼ ‽ ☭ ✏ ⌨…...

Unity学习part4

1、ui界面的基础使用 ui可以在2d和矩形工具界面下操作,更方便,画布与游戏窗口的比例一般默认相同 如图所示,图片在画布上显示的位置和在游戏窗口上显示的位置是相同的 渲染模式:屏幕空间--覆盖,指画布覆盖在游戏物体渲…...

【AI绘画】大卫• 霍克尼风格——自然的魔法(一丹一世界)

大卫• 霍克尼,很喜欢这个老头,“艺术是一场战斗”。老先生零九年有了iphone,开始用iphone画画,一零年开始用ipad画画,用指头划拉,据说五分钟就能画一幅,每天早上随手画几幅送给身边的朋友。很c…...

MySQL日志undo log、redo log和binlog详解

MySQL 日志:undo log、redo log、binlog 有什么用? 一、前言 在MySQL数据库中,undo log、redo log和binlog这三种日志扮演着至关重要的角色,它们各自承担着不同的功能,共同保障了数据库的正常运行和数据的完整性。了解…...

C++中的指针

一.指针的定义 在C中,指针是一种特殊的变量,它存储另一个变量的内存地址。简单的说,指针是指向另一个数据类型的“指针”或“引用”,我们可以通过指针来间接操作其他变量的值。 指针的基本语法: 数据类型 *指针变量名 …...

拆解微软CEO纳德拉战略蓝图:AI、量子计算、游戏革命如何改写未来规则!

2025年2月19日 知名博主Dwarkesh Patel对话微软CEO萨蒂亚纳德拉 在最新访谈释放重磅信号:AI将掀起工业革命级增长,量子计算突破引爆材料科学革命,游戏引擎进化为世界模拟器。 整个视频梳理出几大核心观点,揭示科技巨头的未来十年…...

智能算法如何优化数字内容体验的个性化推荐效果

内容概要 在数字内容体验的优化过程中,个性化推荐系统的核心价值在于通过数据驱动的技术手段,将用户需求与内容资源进行高效匹配。系统首先基于用户行为轨迹分析,捕捉包括点击频次、停留时长、交互路径等关键指标,形成对用户兴趣…...

MATLAB在数据分析和绘图中的应用:从基础到实践

引言 股票数据分析是金融领域中的重要研究方向,通过对历史价格、成交量等数据的分析,可以帮助投资者更好地理解市场趋势和做出决策。MATLAB作为一种强大的科学计算工具,提供了丰富的数据处理和可视化功能,非常适合用于股票数据的…...

AI客服-接入deepseek大模型到微信(本地部署deepseek集成微信自动收发消息)

1.本地部署 1.1 ollama Ollama软件通过其高度优化的推理引擎和先进的内存管理机制,显著提升了大型语言模型在本地设备上的运行效率。其核心采用了量化技术(Quantization)以降低模型的计算复杂度和存储需求,同时结合张量并行计算&…...

Host文件没有配置ip解析,导致请求接口速度慢

Linux访问第三方接口速度慢 现象 在测试环境,Linux的服务器中,要访问第三方接口;速度有时快,有时慢。 有时候第一次访问比较慢,第二次访问比较快。第三方人员,排查之后,第三方接口没有问题&am…...

excel导入Mysql中时间格式异常

问题描述: 当使用xls/xlsx/csv导入mysql中,如果列是时间类型比如excel表中显示2024/02/20 09:18:00,导入后时间可能就会变成1900-01-01 09:18:00这样。 问题原因: 这是由于excel表中和数据库中的时间类型不匹配导致。 问题解决…...

vue 判断一个属性值,如果是null或者空字符串或者是空格没有值的情况下,赋值为--

在 Vue 中,可以通过多种方式来判断一个属性值是否为 null、空字符串或者仅包含空格,如果满足这些条件则将其赋值为 --。下面分别介绍在模板和计算属性、方法中实现的具体做法。 1. 在模板中直接判断 如果只需要在模板中对属性值进行显示处理&#xff0c…...

JavaWeb-Tomcat服务器

文章目录 Web服务器存在的意义关于Web服务器软件Tomcat服务器简介安装Tomcat服务器Tomcat服务器源文件解析配置Tomcat的环境变量启动Tomcat服务器一个最简单的webapp(不涉及Java) Web服务器存在的意义 我们之前介绍过Web服务器进行通信的原理, 但是我们当时忘记了一点, 服务器…...

vue语法---样式操作-行内样式

文章目录 直接写死的行内样式v-bind绑定对象(静态样式)对象数组 直接写死的行内样式 <template><div v-bind:style"{color:red}">睡觉</div> </template><script>export default{data() {return {}},methods:{}, mounted(){},} </…...

封装一个echarts的组件

父组件页面 <yyjlchartv-if"showyyjl"chartId"yyjllLine":sourceData"sourceDatayyjl":options"optionsyyjl"></yyjlchart>components: {LineEcharts,yyjlchart: () > import("../yyjlchart"),},data() {re…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

MongoDB学习和应用(高效的非关系型数据库)

一丶 MongoDB简介 对于社交类软件的功能&#xff0c;我们需要对它的功能特点进行分析&#xff1a; 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具&#xff1a; mysql&#xff1a;关系型数据库&am…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

SAP学习笔记 - 开发26 - 前端Fiori开发 OData V2 和 V4 的差异 (Deepseek整理)

上一章用到了V2 的概念&#xff0c;其实 Fiori当中还有 V4&#xff0c;咱们这一章来总结一下 V2 和 V4。 SAP学习笔记 - 开发25 - 前端Fiori开发 Remote OData Service(使用远端Odata服务)&#xff0c;代理中间件&#xff08;ui5-middleware-simpleproxy&#xff09;-CSDN博客…...

网站指纹识别

网站指纹识别 网站的最基本组成&#xff1a;服务器&#xff08;操作系统&#xff09;、中间件&#xff08;web容器&#xff09;、脚本语言、数据厍 为什么要了解这些&#xff1f;举个例子&#xff1a;发现了一个文件读取漏洞&#xff0c;我们需要读/etc/passwd&#xff0c;如…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行

项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战&#xff0c;克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...

使用ch340继电器完成随机断电测试

前言 如图所示是市面上常见的OTA压测继电器&#xff0c;通过ch340串口模块完成对继电器的分路控制&#xff0c;这里我编写了一个脚本方便对4路继电器的控制&#xff0c;可以设置开启时间&#xff0c;关闭时间&#xff0c;复位等功能 软件界面 在设备管理器查看串口号后&…...

【HTML】HTML 与 CSS 基础教程

作为 Java 工程师&#xff0c;掌握 HTML 和 CSS 也是需要的&#xff0c;它能让你高效与前端团队协作、调试页面元素&#xff0c;甚至独立完成简单页面开发。本文将用最简洁的方式带你掌握核心概念。 一、HTML&#xff0c;网页骨架搭建 核心概念&#xff1a;HTML通过标签定义内…...

循环神经网络(RNN):从理论到翻译

循环神经网络&#xff08;RNN&#xff09;是一种专为处理序列数据设计的神经网络&#xff0c;如时间序列、自然语言或语音。与传统的全连接神经网络不同&#xff0c;RNN具有"记忆"功能&#xff0c;通过循环传递信息&#xff0c;使其特别适合需要考虑上下文或顺序的任…...