当前位置: 首页 > news >正文

深入剖析 DeepSeek:张量计算范式全解析

一、引言

在 AI 技术迅猛发展的当下,DeepSeek 以其卓越的性能成为研究热点。清华大学的《DeepSeek:从入门到精通》这一珍贵资料,为我们深入挖掘 DeepSeek 核心原理提供了指引,其中张量计算范式更是关键所在,它构建起整个 DeepSeek 架构的数学根基,支撑着模型从训练到推理的每一步运作。

二、张量:深度学习世界的基石

张量,简单来说,是一种多维数组。在 DeepSeek 中,标量可视为 0 维张量,向量是 1 维张量,矩阵则是 2 维张量。例如,一个单一的数值 5 就是标量也就是 0 维张量;[1, 2, 3] 这样的数组是 1 维张量;而像 [[1, 2], [3, 4]] 就是 2 维张量。它之所以重要,是因为深度学习处理的数据往往具有复杂的结构,图像可能是三维(长、宽、通道)张量,文本序列在经过编码后也会形成高维张量表示,以涵盖词向量、序列长度等信息。在 Python 中,借助 NumPy 库能轻松创建张量。例如:

import numpy as np
# 0维张量(标量)
scalar = np.array(5) 
# 1维张量(向量)
vector = np.array([1, 2, 3]) 
# 2维张量(矩阵)
matrix = np.array([[1, 2], [3, 4]]) 

在 DeepSeek 场景里,图像数据常以三维张量表示,如 (height, width, channels),文本经编码后也呈现为高维张量,用于承载序列、词向量等多维度信息,为后续模型处理奠定基础。

三、张量计算范式基础:核心运算详解

  1. 加法与减法:在神经网络训练时,权重更新离不开张量加减法。以简单的线性回归模型为例,假设我们有预测值张量 y_pred 和真实值张量 y_true,计算损失函数梯度时,常涉及二者差值:
import torch
# 模拟预测值和真实值张量(这里用 PyTorch 张量举例,实际 DeepSeek 框架类似)
y_pred = torch.tensor([2.0, 3.0, 4.0])
y_true = torch.tensor([1.0, 2.0, 3.0])
loss_gradient = y_pred - y_true  
print(loss_gradient)  

这一运算按元素对应相减,得到梯度信息,指引模型优化方向,使预测值不断逼近真实值。

  1. 乘法
    • 点积:常用于衡量向量间相似性。在文本分类任务中,假设有两个文本的词向量表示 text1_vectext2_vec,点积可反映文本关联程度:
text1_vec = torch.tensor([1, 2, 3])
text2_vec = torch.tensor([4, 5, 6])
similarity = torch.dot(text1_vec, text2_vec)  
print(similarity) 
- **矩阵乘法**:是神经网络全连接层关键运算。如在一个简单的两层神经网络,输入层到隐藏层:
input_layer = torch.tensor([[1, 2], [3, 4]])
weight_matrix = torch.tensor([[0.5, 0.6], [0.7, 0.8]])
hidden_layer = torch.matmul(input_layer, weight_matrix)  
print(hidden_layer) 

通过矩阵乘法,输入特征依权重变换,传递到下一层,逐步提取复杂特征。

四、张量的变形与重塑:适配模型需求

在 DeepSeek 模型搭建中,张量形状调整不可或缺。以卷积神经网络处理图像为例,卷积层输出特征图为四维张量 (batch_size, height, width, channels),进入全连接层前需拉平:

import torch.nn.functional as F
# 模拟卷积层输出
conv_output = torch.randn(10, 5, 5, 3) 
flattened = F.flatten(conv_output, start_dim=1) 
print(flattened.shape) 

flatten 操作重塑,变为二维张量 (batch_size, feature_vector_length),无缝对接全连接层权重矩阵,保障数据流畅传递,避免因形状错配引发计算故障。

五、张量计算在 DeepSeek 模型中的深度实践

  1. 循环神经网络(RNN)家族:长短期记忆网络(LSTM)中,门控单元依赖张量运算。如在某一时间步 t,输入 x_t 与前一时刻隐藏状态 h_{t-1} 拼接成输入张量:
# 模拟输入与隐藏状态张量
x_t = torch.tensor([0.1, 0.2, 0.3])
h_tminus1 = torch.tensor([0.4, 0.5, 0.6])
input_combined = torch.cat((x_t, h_tminus1), dim=0) 

接着遗忘门、输入门、输出门分别通过与权重矩阵做点积、加法等运算,精准调控信息留存与更新,助力模型处理长序列,如语音识别、情感分析任务。

  1. 注意力机制:在 Transformer 架构(自然语言处理利器)里,注意力计算是精髓。给定查询张量 Q、键张量 K、值张量 V
Q = torch.randn(5, 3)  
K = torch.randn(5, 3)  
V = torch.randn(5, 3)  
# 计算注意力得分
attention_scores = torch.matmul(Q, K.transpose(-1, -2)) / np.sqrt(3)  
attention_probs = torch.softmax(attention_scores, dim=-1)  
output = torch.matmul(attention_probs, V)  
print(output) 

模型借此聚焦文本关键,提升翻译、问答效率,让机器对语言理解更到位。

六、挑战与应对策略

  1. 计算效率瓶颈:随着 DeepSeek 模型膨胀,张量计算量飙升。大型预训练模型多层运算在 GPU 上也举步维艰。采用混合精度训练是妙计,像在 TensorFlow 或 PyTorch 中:
# PyTorch 示例
model = YourDeepSeekModel()
optimizer = torch.optim.Adam(model.parameters())
scaler = torch.cuda.amp.GradScaler()
for inputs, labels in dataloader:with torch.cuda.amp.autocast():outputs = model(inputs)loss = loss_function(outputs, labels)scaler.scale(loss).backward()scaler.step(optimizer)scaler.update()

用半精度加速计算、优化器精细调参,让模型训练又快又准。

  1. 内存管理难题:频繁张量操作致内存碎片化。合理规划张量生命周期至关重要,及时清理无用张量。以 PyTorch 为例:
# 假设模型运行多轮后
torch.cuda.empty_cache() 

定期执行此操作,清扫 GPU 缓存,为后续计算腾出空间,确保模型稳定运行。

七、结语

深入探究 DeepSeek 的张量计算范式,如同揭开 AI 核心引擎的神秘面纱。从基础运算到复杂模型集成应用,每一处细节都蕴含巨大能量。理解这些不仅助我们吃透 DeepSeek,更赋能实际开发创新,推动 AI 边界不断拓展,借这把智慧钥匙开启智能新征程。愿这篇结合 DeepSeek 与清华资料的剖析,照亮大家深度学习探索之路。

相关文章:

深入剖析 DeepSeek:张量计算范式全解析

一、引言 在 AI 技术迅猛发展的当下,DeepSeek 以其卓越的性能成为研究热点。清华大学的《DeepSeek:从入门到精通》这一珍贵资料,为我们深入挖掘 DeepSeek 核心原理提供了指引,其中张量计算范式更是关键所在,它构建起整…...

VSCode集成deepseek使用介绍(Visual Studio Code)

VSCode集成deepseek使用介绍(Visual Studio Code) 1. 简介 随着AI辅助编程工具的快速发展,VSCode作为一款轻量级、高度可扩展的代码编辑器,已成为开发者首选的工具之一。DeepSeek作为AI模型,结合Roo Code插件&#x…...

【保姆级教程】DeepSeek R1+RAG,基于开源三件套10分钟构建本地AI知识库

一、总体方案 目前在使用 DeepSeek 在线环境时,页面经常显示“服务器繁忙,请稍后再试”,以 DeepSeek R1 现在的火爆程度,这个状况可能还会持续一段时间,所以这里给大家提供了 DeepSeek R1 RAG 的本地部署方案。最后实现…...

vue,vue3 keepalive没有效果,无法缓存页面include无效,keep-alive

keepalive没有效果,无法缓存页面? 问题大概是组件的name值不对应,vue2修改组件文件的name值,vue3保持组件文件名称和路由页面配置的name一致就可以了,如果vue3不想保持一致,必须手动在文件后面添加export..…...

Windows逆向工程入门之指针类型

公开视频 -> 链接点击跳转公开课程博客首页 -> ​​​链接点击跳转博客主页 目录 1. 指针特性 1.1 指针的优点 1.2 指针的缺点 2. 智能指针 2.1 智能指针的优点 2.2 智能指针的缺点 3. 指针的安全攻防 3.1 指针使用 3.2 指针运算 3.3 指针引用 3.4 参数传递 …...

PHP+Apache+MySQL安装(Windows)

一、安装教程 参考链接1 参考链接2 二、问题描述 PHP安装目录下找不到php8apache2_4.dll PHP安装包下载错误 Apache Service Monitor: request operation has failed! 定位问题: 查看【事件查看器】 解决问题 安装或更新与PHP版本相对应的Visual C Redistribu…...

算法基础 -- 堆排序之C语言实现

C语言实现堆排序&#xff08;Heap Sort&#xff09; 1. 代码实现 下面是 C语言实现的堆排序接口&#xff0c;支持 通用数据类型排序&#xff0c;并采用 函数指针 进行 自定义比较&#xff0c;适用于 整数排序 或 结构体排序。 完整代码 大根堆 #include <stdio.h> #…...

Hutool - Extra:功能丰富的扩展模块

一、简介 Hutool - Extra 作为 Hutool 工具包的扩展模块&#xff0c;对众多第三方库和功能进行了封装&#xff0c;极大地丰富了 Hutool 的功能体系。它涵盖了模板引擎、邮件发送、Servlet 处理、二维码生成、Emoji 处理、FTP 操作以及分词等多个方面&#xff0c;为开发者在不同…...

C++ 中的继承详解(上)

目录 1、继承的概念及定义 1.1、继承的概念 1.2、继承定义 1.2.1、定义格式 1.2.2、继承方式 1.2.3、继承基类成员访问方式的变化 2、基类和派生类对象赋值转换 3、继承中的作用域 4、派生类的默认成员函数 补充&#xff1a;封装的层次(实际上有很多层的&#xff0c;这…...

halcon三维点云数据处理(二十五)moments_object_model_3d

目录 一、moments_object_model_3d例程二、moments_object_model_3d函数三、效果图 一、moments_object_model_3d例程 这个例子说明了如何使用moments_object_model_3d运算符来将3D数据与x、y、z坐标轴对齐。在实际应用中&#xff0c;通过3D传感器获取的物体模型可能具有一个与…...

Mac M3/M4 本地部署Deepseek并集成vscode

Mac 部署 使用傻瓜集成平台ollama&#xff0c;ollama平台依赖于docker&#xff0c;Mac的M3/M4 因doesn’t have VT-X/AMD-v enabled 所以VB,VM无法使用&#xff0c;导致docker无法启动&#xff0c;需要使用docker的替代品podman&#xff0c; 它完全兼容docker brew install p…...

2024年职高单招或高考计算机类投档线

问题&#xff1a; 这些学校2024年职高单招或高考计算机类投档线分别是多少 回答&#xff1a; 部分学校2024年职高单招或高考计算机类投档线如下&#xff1a; 湖南工业职业技术学院 职高单招&#xff1a;未查询到2024年职高单招计算机类专业明确的录取分数线信息。但在2024年…...

Unity Excel导表工具转Lua文件

思路介绍 借助EPPlus读取Excel文件中的配置数据&#xff0c;根据指定的不同类型的数据配置规则来解析成对应的代码文本&#xff0c;将解析出的字符串内容写入到XXX.lua.txt文件中即可 EPPlus常用API //命名空间 using OfficeOpenXml;//Excel文件路径 var fileExcel new File…...

SpringBoot项目集成MinIO

最近在学习MinIO&#xff0c;所以想让自己的SpringBoot项目集成MinIO,在网上查阅资料&#xff0c;并进行操作的过程中遇到一些问题&#xff0c;所以想把自己遇到的坑和完成步骤记录下来供自己和各位查阅。 一. MinIO的下载安装以及基本使用 1. 下载地址&#xff1a;https://d…...

第30篇 基于ARM A9处理器用C语言实现中断<六>

Q&#xff1a;怎样设计基于ARM A9处理器的C语言程序在数码管上滚动显示字符&#xff1f; A&#xff1a;使用A9 Private Timer中断源&#xff0c;控制字符滚动的速度&#xff1b;按键产生中断可以控制字符暂停/继续滚动。 本实验在DE1-SoC开发板的6个七段数码管*HEX5~HEX0*上…...

Flutter 中的单例模式

传统&#xff1a; class RouterManager {// 单例模式static final RouterManager _instance RouterManager._internal();factory RouterManager() {return _instance;}RouterManager._internal(); }传递参数进行初始化时&#xff1a; class RouterManager {// 私有静态实例&a…...

8.python文件

文章目录 1.**文件**1.1**文件是什么**1.2**文件路径**1.3**文件操作**1.3.1**打开文件**1.3.2**关闭文件**1.3.3**写文件**1.3.4**读文件** 1.4**关于中文的处理**1.5**使用上下文管理器** 大家好&#xff0c;我是晓星航。今天为大家带来的是 python文件 相关的讲解&#xff0…...

2025vue4.x全栈学习关键技术分析线路图

关键升级点说明‌&#xff1a; ‌编译优化‌ &#xff1a;Vue 4.x采用WASM编译提速300% ‌智能工具链‌ &#xff1a;Vite插件市场新增AI代码审查模块 ‌跨平台能力‌ &#xff1a;Uni-App支持原生ARCore/ARKit调用 ‌安全增强‌ &#xff1a;默认启用WebAuthn生物认证…...

革新之力:数字科技——重塑未来的超越想象之旅

在21世纪的科技浪潮中&#xff0c;数字科技如同一股不可阻挡的洪流&#xff0c;正以前所未有的速度和广度改变着我们的生活、工作乃至整个社会的结构。它不仅是技术的简单迭代&#xff0c;更是对人类社会认知边界的拓宽&#xff0c;对经济模式、社会治理、文化形态等多方面的深…...

超级详细,知识图谱系统的理论详解+部署过程

知识图谱系统(Knowledge Graph System)是一种用于表示、存储、查询和推理知识的系统。它通过结构化的方式将现实世界中的实体、概念及其相互关系组织成一个图结构,从而帮助机器理解和处理复杂的知识。 知识图谱的核心组成部分 实体(Entities): 实体是知识图谱中的节点,…...

css实现圆环展示百分比,根据值动态展示所占比例

代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

微服务商城-商品微服务

数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

【HTML-16】深入理解HTML中的块元素与行内元素

HTML元素根据其显示特性可以分为两大类&#xff1a;块元素(Block-level Elements)和行内元素(Inline Elements)。理解这两者的区别对于构建良好的网页布局至关重要。本文将全面解析这两种元素的特性、区别以及实际应用场景。 1. 块元素(Block-level Elements) 1.1 基本特性 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

在WSL2的Ubuntu镜像中安装Docker

Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包&#xff1a; for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...