einops测试
文章目录
- 1. einops
- 2. code
- 3. pytorch
1. einops
einops 主要是通过爱因斯坦标记法来处理张量矩阵的库,让矩阵处理上非常简单。
- conda :
conda install conda-forge::einops
- python:
2. code
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, repeat, reducetorch.set_printoptions(precision=3, sci_mode=False)if __name__ == "__main__":run_code = 0x = torch.arange(96).reshape((2, 3, 4, 4)).to(torch.float32)print(f"x.shape={x.shape}")print(f"x=\n{x}")# 1. 转置x_torch_trans = x.transpose(1, 2)x_einops_trans = rearrange(x, 'b i w h -> b w i h')x_check_trans = torch.allclose(x_torch_trans, x_einops_trans)print(f"x_torch_trans is {x_check_trans} same with x_einops_trans")# 2. 变形x_torch_reshape = x.reshape(6, 4, 4)x_einops_reshape = rearrange(x, 'b i w h -> (b i) w h')x_check_reshape = torch.allclose(x_torch_reshape, x_einops_reshape)print(f"x_einops_reshape is {x_check_reshape} same with x_check_reshape")# 3. image2patchimage2patch = rearrange(x, 'b i (h1 p1) (w1 p2) -> b i (h1 w1) p1 p2', p1=2, p2=2)print(f"image2patch.shape={image2patch.shape}")print(f"image2patch=\n{image2patch}")image2patch2 = rearrange(image2patch, 'b i j h w -> b (i j) h w')print(f"image2patch2.shape={image2patch2.shape}")print(f"image2patch2=\n{image2patch2}")y = torch.arange(24).reshape((2, 3, 4)).to(torch.float32)y_einops_mean = reduce(y, 'b h w -> b h', 'mean')print(f"y=\n{y}")print(f"y_einops_mean=\n{y_einops_mean}")y_tensor = torch.arange(24).reshape(2, 2, 2, 3)y_list = [y_tensor, y_tensor, y_tensor]y_output = rearrange(y_list, 'n b i h w -> n b i h w')print(f"y_tensor=\n{y_tensor}")print(f"y_output=\n{y_output}")z_tensor = torch.arange(12).reshape(2, 2, 3).to(torch.float32)z_tensor_1 = rearrange(z_tensor, 'b h w -> b h w 1')print(f"z_tensor=\n{z_tensor}")print(f"z_tensor_1=\n{z_tensor_1}")z_tensor_2 = repeat(z_tensor_1, 'b h w 1 -> b h w 2')print(f"z_tensor_2=\n{z_tensor_2}")z_tensor_repeat = repeat(z_tensor, 'b h w -> b (2 h) (2 w)')print(f"z_tensor_repeat=\n{z_tensor_repeat}")
- python:
x.shape=torch.Size([2, 3, 4, 4])
x=
tensor([[[[ 0., 1., 2., 3.],[ 4., 5., 6., 7.],[ 8., 9., 10., 11.],[12., 13., 14., 15.]],[[16., 17., 18., 19.],[20., 21., 22., 23.],[24., 25., 26., 27.],[28., 29., 30., 31.]],[[32., 33., 34., 35.],[36., 37., 38., 39.],[40., 41., 42., 43.],[44., 45., 46., 47.]]],[[[48., 49., 50., 51.],[52., 53., 54., 55.],[56., 57., 58., 59.],[60., 61., 62., 63.]],[[64., 65., 66., 67.],[68., 69., 70., 71.],[72., 73., 74., 75.],[76., 77., 78., 79.]],[[80., 81., 82., 83.],[84., 85., 86., 87.],[88., 89., 90., 91.],[92., 93., 94., 95.]]]])
x_torch_trans is True same with x_einops_trans
x_einops_reshape is True same with x_check_reshape
image2patch.shape=torch.Size([2, 3, 4, 2, 2])
image2patch=
tensor([[[[[ 0., 1.],[ 4., 5.]],[[ 2., 3.],[ 6., 7.]],[[ 8., 9.],[12., 13.]],[[10., 11.],[14., 15.]]],[[[16., 17.],[20., 21.]],[[18., 19.],[22., 23.]],[[24., 25.],[28., 29.]],[[26., 27.],[30., 31.]]],[[[32., 33.],[36., 37.]],[[34., 35.],[38., 39.]],[[40., 41.],[44., 45.]],[[42., 43.],[46., 47.]]]],[[[[48., 49.],[52., 53.]],[[50., 51.],[54., 55.]],[[56., 57.],[60., 61.]],[[58., 59.],[62., 63.]]],[[[64., 65.],[68., 69.]],[[66., 67.],[70., 71.]],[[72., 73.],[76., 77.]],[[74., 75.],[78., 79.]]],[[[80., 81.],[84., 85.]],[[82., 83.],[86., 87.]],[[88., 89.],[92., 93.]],[[90., 91.],[94., 95.]]]]])
image2patch2.shape=torch.Size([2, 12, 2, 2])
image2patch2=
tensor([[[[ 0., 1.],[ 4., 5.]],[[ 2., 3.],[ 6., 7.]],[[ 8., 9.],[12., 13.]],[[10., 11.],[14., 15.]],[[16., 17.],[20., 21.]],[[18., 19.],[22., 23.]],[[24., 25.],[28., 29.]],[[26., 27.],[30., 31.]],[[32., 33.],[36., 37.]],[[34., 35.],[38., 39.]],[[40., 41.],[44., 45.]],[[42., 43.],[46., 47.]]],[[[48., 49.],[52., 53.]],[[50., 51.],[54., 55.]],[[56., 57.],[60., 61.]],[[58., 59.],[62., 63.]],[[64., 65.],[68., 69.]],[[66., 67.],[70., 71.]],[[72., 73.],[76., 77.]],[[74., 75.],[78., 79.]],[[80., 81.],[84., 85.]],[[82., 83.],[86., 87.]],[[88., 89.],[92., 93.]],[[90., 91.],[94., 95.]]]])
y=
tensor([[[ 0., 1., 2., 3.],[ 4., 5., 6., 7.],[ 8., 9., 10., 11.]],[[12., 13., 14., 15.],[16., 17., 18., 19.],[20., 21., 22., 23.]]])
y_einops_mean=
tensor([[ 1.500, 5.500, 9.500],[13.500, 17.500, 21.500]])
y_tensor=
tensor([[[[ 0, 1, 2],[ 3, 4, 5]],[[ 6, 7, 8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]])
y_output=
tensor([[[[[ 0, 1, 2],[ 3, 4, 5]],[[ 6, 7, 8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]],[[[[ 0, 1, 2],[ 3, 4, 5]],[[ 6, 7, 8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]],[[[[ 0, 1, 2],[ 3, 4, 5]],[[ 6, 7, 8],[ 9, 10, 11]]],[[[12, 13, 14],[15, 16, 17]],[[18, 19, 20],[21, 22, 23]]]]])
z_tensor=
tensor([[[ 0., 1., 2.],[ 3., 4., 5.]],[[ 6., 7., 8.],[ 9., 10., 11.]]])
z_tensor_1=
tensor([[[[ 0.],[ 1.],[ 2.]],[[ 3.],[ 4.],[ 5.]]],[[[ 6.],[ 7.],[ 8.]],[[ 9.],[10.],[11.]]]])
z_tensor_2=
tensor([[[[ 0., 0.],[ 1., 1.],[ 2., 2.]],[[ 3., 3.],[ 4., 4.],[ 5., 5.]]],[[[ 6., 6.],[ 7., 7.],[ 8., 8.]],[[ 9., 9.],[10., 10.],[11., 11.]]]])
z_tensor_repeat=
tensor([[[ 0., 1., 2., 0., 1., 2.],[ 3., 4., 5., 3., 4., 5.],[ 0., 1., 2., 0., 1., 2.],[ 3., 4., 5., 3., 4., 5.]],[[ 6., 7., 8., 6., 7., 8.],[ 9., 10., 11., 9., 10., 11.],[ 6., 7., 8., 6., 7., 8.],[ 9., 10., 11., 9., 10., 11.]]])
3. pytorch

相关文章:
einops测试
文章目录 1. einops2. code3. pytorch 1. einops einops 主要是通过爱因斯坦标记法来处理张量矩阵的库,让矩阵处理上非常简单。 conda : conda install conda-forge::einopspython: 2. code import torch import torch.nn as nn import torch.nn.functional as…...
25轻化工程研究生复试面试问题汇总 轻化工程专业知识问题很全! 轻化工程复试全流程攻略 轻化工程考研复试真题汇总
轻化工程复试心里没谱?学姐带你玩转面试准备! 是不是总觉得老师会问些刁钻问题?别焦虑!其实轻化工程复试套路就那些,看完这篇攻略直接掌握复试通关密码!文中有重点面试题可直接背~ 目录 一、这些行为赶紧避…...
小米路由器 AX3000T 降级后无法正常使用,解决办法
问题描述 买了个 AX3000T 路由器,想安装 OpenWRT 或者 安装 Clash 使用,看教程说是需要降级到 v1.0.47 版本。 结果刷机之后路由器无法打开了,一直黄灯亮,中间灭一下,又是黄灯长亮,没有 WIFI 没有连接。以…...
qt5实现表盘的旋转效果,通过提升QLabel类
因为工作需要,需要实现温度的表盘展示效果 实现思路: 通过提示声QLabel控价类,实现报盘的旋转和展示效果 1. 编写一个QLabel的类MyQLabel,实现两个方法 1. void paintEvent(QPaintEvent *event); //重绘函数 2. void valueChanged(int va…...
【HeadFirst系列之HeadFirst设计模式】第7天之命令模式:封装请求,轻松实现解耦!
命令模式:封装请求,轻松实现解耦! 大家好!今天我们来聊聊设计模式中的命令模式(Command Pattern)。如果你曾经需要将请求封装成对象,或者希望实现请求的撤销、重做等功能,那么命令模…...
HTTPS(下)
主要讲加密算法RSA,ECDHE TLS的握手涉及四次通信,根据不同的密钥交换算法,TLS 握手流程也会不一样的,现在常用的密钥交换算法有两种:RSA 算法和 ECDHE 算法 正常情况下,需要先TCP三次握手后进行TLS四次握手…...
vue2 和 vue3 中 computer 计算属性的用法
Vue 2 中的 computed 在 Vue 2 中,计算属性是响应式的,并且基于 getter 进行缓存,只有依赖的响应式数据发生变化时才会重新计算。 基本用法 <template><div><p>原始消息:{{ message }}</p><p>反…...
【STM32学习】标准库实现STM32 ADC采集1路、2路、多路
目录 ADC采集 ADC配置步骤 STM32F103C8T6的ADC 输入通道 编辑 1路ADC(A4 ADC 通道4) 1路ADC源码代码链接: 2路ADC(A4 ADC 通道4、A5 ADC 通道5)基于DMA实现 多路ADC实现采集 ADC采集 ADC配置步骤 使能GPIO…...
【STM32】外部时钟|红外反射光电开关
1.外部时钟 单片机如何对外部触发进行计数?先看一下内部时钟,内部时钟是接在APB1和APB2时钟线上的,APB1,APB2来自stm32单片机内部的脉冲信号,也叫内部时钟。我们用来定时。同样我们可以把外部的信号接入单片机,来对其…...
【语音科学计算器】当前汇率
JSON_MARKER_HORN{“base”:“USD”,“rates”:{“EUR”:0.9758,“JPY”:157.68,“GBP”:0.8190,“CNY”:7.3327,“HKD”:7.7872,“AUD”:1.6260,“CAD”:1.4422,“CHF”:0.9157,“SGD”:1.3714,“KRW”:1473.05,“NZD”:1.7992,“THB”:34.54,“MYR”:4.4930,“PHP”:57.32,“…...
PHP post 数据丢失问题
max_input_vars是PHP配置选项之一,用于设置一个请求中允许的最大输入变量数。它指定了在处理POST请求或者通过URL传递的参数时,PHP脚本能够接收和处理的最大变量数量。 max_input_vars的默认值是1000,意味着一个请求中最多可以包含1000个输入…...
【云服务器】云服务器内存不够用,开启SWAP交换分区
交换分区(Swap) 1.创建 2GB Swap 文件 sudo fallocate -l 2G /swapfile (如果 fallocate 不支持,可以用 dd 命令) sudo dd if/dev/zero of/swapfile bs1M count2048 2.设置 Swap 权限 sudo chmod 600 /swapfile…...
未来SLAM的研究方向和热点
SLAM(Simultaneous Localization and Mapping)是同时定位与地图构建的缩写,指的是机器人或设备在一个未知环境中一边进行自我定位,一边构建出环境的地图。SLAM广泛应用于机器人、自动驾驶、无人机等领域,涉及多个研究方…...
Orange 单体架构 - 快速启动
1 后端服务 1.1 基础设施 组件说明版本MySQLMySQL数据库服务5.7/8JavaJava17redis-stackRedis向量数据库最新版本Node安装Node22.11.0 1.2 orange-dependencies-parent 项目Maven依赖版本管理 1.2.1 项目克隆 GitHub git clone https://github.com/hengzq/orange-depende…...
【SQL】多表查询案例
📢本章节主要学习使用SQL多表查询的案例,多表查询基础概念 请点击此处。 🎄数据准备 首先我们创建一个新的表也就是薪资等级表,其余两个表(员工表和薪资表)在多表查询章节中已经创建。然后我么根据这三个表完成下面的12个需求。 create tab…...
springboot系列十四: 注入Servlet, Filter, Listener + 内置Tomcat配置和切换 + 数据库操作
文章目录 注入Servlet, Filter, Listener官方文档基本介绍使用注解方式注入使用RegistrationBean方法注入DispatcherServlet详解 内置Tomcat配置和切换基本介绍内置Tomcat配置通过application.yml完成配置通过类配置 切换Undertow 数据库操作 JdbcHikariDataSource需求分析应用…...
力扣-贪心-53 最大子数组和
思路 先把每一个值都加到当前集合中,记录当前的和,直到当前记录和小于0了,再重置改记录,再次尝试累加 代码 class Solution { public:int maxSubArray(vector<int>& nums) {int res INT32_MIN;int curSum 0;for(in…...
吃一堑长一智
工作中经历,有感触记录下 故事一 以前在一家公司时,自己是一名开发人员,遇到问题请教领导解决方案,当时领导给了建议,后来上线后出问题了,背了锅。心里想的是领导说这样做的呀,为什么出问题还…...
aws(学习笔记第二十九课) aws cloudfront hands on
aws(学习笔记第二十九课) 使用aws cloudfront 学习内容: 什么是aws cloudfront练习使用aws cloudfront 1. 什么是aws cloudfront aws cloudfront的整体架构 这里可以看出,aws引入了edge location的概念,用户的client与edge location进行是…...
deepseek自动化代码生成
使用流程 效果第一步:注册生成各种大模型的API第二步:注册成功后生成API第三步:下载vscode在vscode中下载agent,这里推荐使用cline 第四步:安装完成后,设置模型信息第一步选择API provider: Ope…...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...
Objective-C常用命名规范总结
【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名(Class Name)2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
C++ 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
Springboot社区养老保险系统小程序
一、前言 随着我国经济迅速发展,人们对手机的需求越来越大,各种手机软件也都在被广泛应用,但是对于手机进行数据信息管理,对于手机的各种软件也是备受用户的喜爱,社区养老保险系统小程序被用户普遍使用,为方…...
USB Over IP专用硬件的5个特点
USB over IP技术通过将USB协议数据封装在标准TCP/IP网络数据包中,从根本上改变了USB连接。这允许客户端通过局域网或广域网远程访问和控制物理连接到服务器的USB设备(如专用硬件设备),从而消除了直接物理连接的需要。USB over IP的…...
