PyEcharts 数据可视化:从入门到实战
一、PyEcharts 简介
PyEcharts 是基于百度开源可视化库 ECharts 的 Python 数据可视化工具,支持生成交互式的 HTML 格式图表。相较于 Matplotlib 等静态图表库,PyEcharts 具有以下优势:
- 丰富的图表类型(30+)
- 动态交互功能(数据筛选、缩放等)
- 简洁的 API 设计
- 良好的网页兼容性
二、环境配置
安装命令:
pip install pyecharts
推荐配合 Jupyter Notebook 使用(需安装 jupyter-echarts 插件)或直接生成 HTML 文件。
三、核心概念解析
1. Chart 类体系
PyEcharts 提供 Bar, Line, Pie, Scatter 等类对应不同图表类型,均继承自基类 Chart。
2. 配置项(Option)
通过 set_global_opts() 和 set_series_opts() 配置图表:
from pyecharts.charts import Barbar = Bar()
bar.set_global_opts(title_opts={"text": "销售数据"},toolbox_opts={"show": True} # 显示工具箱
)
3. 数据格式
支持多种数据格式:
# 方式1:分别添加 X/Y 轴
bar.add_xaxis(["手机", "电脑", "平板"])
bar.add_yaxis("销售额", [1200, 800, 450])# 方式2:二维数据
bar.add("", [["手机",1200], ["电脑",800], ["平板",450]])
四、实战案例
案例1:动态折线图 - 股票价格趋势
from pyecharts.charts import Line
import numpy as npdates = pd.date_range("2023-01-01", periods=30).strftime("%m-%d").tolist()
prices = np.random.randn(30).cumsum() + 100 # 模拟股价line = (Line().add_xaxis(dates).add_yaxis("股价", prices, is_smooth=True).set_global_opts(title_opts={"text": "股票价格趋势"},datazoom_opts=[{"type": "inside"}], # 内置缩放tooltip_opts={"trigger": "axis"})
)
line.render("stock.html")
生成可缩放、提示数据点的动态折线图。
案例2:多层饼图 - 人口结构分析
from pyecharts.charts import Piedata = [("0-14岁", 17.3),("15-64岁", 68.3),("65岁以上", 14.4)
]pie = (Pie().add(series_name="年龄分布",data_pair=data,radius=["30%", "55%"], # 环形饼图label_opts={"formatter": "{b}: {d}%"}).set_global_opts(title_opts={"text": "中国人口年龄结构(2023)"},legend_opts={"orient": "vertical", "left": "right"})
)
pie.render("population.html")
创建带百分比标签的环形饼图,适合展示比例数据。
案例3:热力地图 - 疫情数据可视化
from pyecharts.charts import Mapprovince_data = [("广东", 1250),("浙江", 890), ("江苏", 760),("湖北", 430)
]map_chart = (Map().add("确诊病例", province_data,maptype="china",is_map_symbol_show=False).set_global_opts(visualmap_opts={"min": 0,"max": 1500,"range_text": ["高", "低"],"is_calculable": True,"color": ["#FFE4B5", "#FF4500"]})
)
map_chart.render("covid_map.html")
生成颜色渐变的中国疫情分布图,直观显示区域差异。
五、进阶技巧
-
组合图表:使用
Grid类实现多图表联动from pyecharts.charts import Gridgrid = Grid() grid.add(bar, grid_opts={"left": "55%"}).add(line) -
时间轴:创建动态演变图表
from pyecharts.charts import Timelinetimeline = Timeline() timeline.add_schema(play_interval=1000) # 自动播放间隔 -
自定义主题:
from pyecharts import options as opts from pyecharts.globals import ThemeTypebar = Bar(init_opts=opts.InitOpts(theme=ThemeType.LIGHT))
六、注意事项
- 版本兼容性:PyEcharts v1.x 与 v0.x 的 API 差异较大,建议使用最新版
- 大数据优化:当数据量 > 10万时,建议启用
WebGL渲染 - 部署建议:通过 Flask/Django 集成时,使用
render_embed()生成代码片段
通过以上方法和案例,开发者可以快速实现专业级的数据可视化效果。官方文档(https://pyecharts.org)提供了完整的 API 参考和示例库,推荐深入学习。
通过实践这些案例,您将能够轻松应对常见的数据可视化需求。PyEcharts 的灵活性和表现力使其成为Python可视化生态中的重要工具,特别适合需要交互性的网页应用场景。
相关文章:
PyEcharts 数据可视化:从入门到实战
一、PyEcharts 简介 PyEcharts 是基于百度开源可视化库 ECharts 的 Python 数据可视化工具,支持生成交互式的 HTML 格式图表。相较于 Matplotlib 等静态图表库,PyEcharts 具有以下优势: 丰富的图表类型(30)动态交互功…...
RT-Thread+STM32L475VET6——ADC采集电压
文章目录 前言一、板载资源二、具体步骤1.打开CubeMX进行配置1.1 使用外部高速时钟,并修改时钟树1.2 打开ADC1的通道3,并配置为连续采集模式(ADC根据自己需求调整)1.3 打开串口1.4 生成工程 2. 配置ADC2.1 打开ADC驱动2.2 声明ADC2.3 剪切stm…...
easyexcel 2.2.6版本导出excel模板时,标题带下拉框及其下拉值过多不显示问题
需求背景:有一个需求要做下拉框的值有100多条,同时这个excel是一个多sheet的导入模板 直接用easyexcel 导出,会出现下拉框的值过多,导致生成出来的excel模板无法正常展示下拉功能 使用的easyexcel版本:<depende…...
树(数据结构·)
树(数据结构篇) 里面没有结点时,称之为空树 树型结构是一对多的形式 深度优先遍历: 所谓的DFS,也就是说每次都尝试向更深的节点走,也就是一条路走到黑 当一条路走完,走到…...
XUnity.AutoTranslator-deepseek——调用腾讯的DeepSeek V3 API,实现Unity游戏中日文文本的自动翻译
XUnity.AutoTranslator-deepseek 本项目通过调用腾讯的DeepSeek V3 API,实现Unity游戏中日文文本的自动翻译。 准备工作 1. 获取API密钥 访问腾讯云API控制台申请DeepSeek的API密钥(限时免费)。也可以使用其他平台提供的DeepSeek API。 …...
谈谈 ES 6.8 到 7.10 的功能变迁(1)- 性能优化篇
前言 ES 7.10 可能是现在比较常见的 ES 版本。但是对于一些相迭代比较慢的早期业务系统来说,ES 6.8 是一个名副其实的“钉子户”。 借着工作内升级调研的任务东风,我整理从 ES 6.8 到 ES 7.10 ELastic 重点列出的新增功能和优化内容。将分为 6 个篇幅给…...
[250222] Kimi Latest 模型发布:尝鲜最新特性与追求稳定性的平衡 | SQLPage v0.33 发布
目录 Kimi Latest 模型发布:尝鲜最新特性与追求稳定性的平衡SQLPage v0.33 发布:使用 SQL 构建自定义 UI 和 API! Kimi Latest 模型发布:尝鲜最新特性与追求稳定性的平衡 Kimi 开放平台推出全新模型 kimi-latest,旨在…...
深入理解设计模式之解释器模式
深入理解设计模式之解释器模式 在软件开发的复杂世界中,我们常常会遇到需要处理特定领域语言的情况。比如在开发一个计算器程序时,需要解析和计算数学表达式;在实现正则表达式功能时,要解析用户输入的正则表达式来匹配文本。这些场景都涉及到对特定语言的解释和执行,而解…...
深入理解设计模式之代理模式
深入理解设计模式之代理模式 在软件开发的复杂体系中,我们常常会遇到这样的情况:需要控制对某个对象的访问,或者在访问对象前后添加一些额外的处理逻辑,又或者希望在不改变原对象代码的基础上扩展其功能。代理模式(Pr…...
Golang | 每日一练 (3)
💢欢迎来到张胤尘的技术站 💥技术如江河,汇聚众志成。代码似星辰,照亮行征程。开源精神长,传承永不忘。携手共前行,未来更辉煌💥 文章目录 Golang | 每日一练 (3)题目参考答案map 实现原理hmapb…...
企业数据集成:实现高效调拨出库自动化
调拨出库对接调出单-v:旺店通企业奇门数据集成到用友BIP 在企业信息化管理中,数据的高效流转和准确对接是实现业务流程自动化的关键。本文将分享一个实际案例,展示如何通过轻易云数据集成平台,将旺店通企业奇门的数据无缝集成到用…...
提效10倍:基于Paimon+Dolphin湖仓一体新架构在阿里妈妈品牌业务探索实践
1. 业务背景 阿里妈妈品牌广告数据包括投放引擎、下发、曝光、点击等日志,面向运筹调控、算法特征、分析报表、诊断监控等应用场景,进行了品牌数仓能力建设。随着业务发展,基于Lambda架构的数仓开发模式,缺陷日益突出:…...
Deepseek快速做PPT
背景: DeepSeek大纲生成 → Kimi结构化排版 → 数据审查,细节调整 DeepSeek 拥有深度思考能力,擅长逻辑构建与内容生成,它会根据我们的问题进行思考,其深度思考能力当前测试下来,不愧为国内No.1,而且还会把中间的思考过程展示出来,大多时候会给出很多我们意想不到的思…...
论文解读 | AAAI'25 Cobra:多模态扩展的大型语言模型,以实现高效推理
点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入! 点击 阅读原文 观看作者讲解回放! 个人信息 作者:赵晗,浙江大学-西湖大学联合培养博士生 内容简介 近年来,在各个领域应用多模态大语言模型(MLLMs&…...
uniapp修改picker-view样式
解决问题: 1.选中文案样式,比如字体颜色 2.修改分割线颜色 3.多列时,修改两边间距让其平分 展示效果: 代码如下 <template><u-popup :show"showPicker" :safeAreaInsetBottom"false" close&quo…...
HDFS Java 客户端 API
一、基本调用 Configuration 配置对象类,用于加载或设置参数属性 FileSystem 文件系统对象基类。针对不同文件系统有不同具体实现。该类封装了文件系统的相关操作方法。 1. maven依赖pom.xml文件 <dependency><groupId>org.apache.hadoop</groupId&g…...
【华三】STP的角色选举(一文讲透)
【华三】STP的角色选举 一、引言二、STP基础概念扫盲三、根桥选举过程详解四、根端口选举过程详解五、指定端口选举过程详解六、阻塞端口七、总结与配置建议七、附录**1. BPDU字段结构图(文字描述)****2. 华三STP常用命令速查表** 文章总结 一、引言 在…...
【C#零基础从入门到精通】(二十六)——C#三大特征-多态详解
【C#零基础从入门到精通】(二十六)——C#三大特征-多态详解 在 C# 中,多态是面向对象编程的重要特性之一,它允许不同的对象对同一消息做出不同的响应。多态可以分为静态多态和动态多态,下面将详细介绍它们以及各自包含的知识点。 多态概述 多态性使得代码更加灵活、可扩展…...
宇树科技13家核心零部件供应商梳理!
2025年2月6日,摩根士丹利(Morgan Stanley)发布最新人形机器人研报:Humanoid 100: Mapping the Humanoid Robot Value Chain(人形机器人100:全球人形机器人产业链梳理)。 Humanoid 100清单清单中…...
Java集合框架全解析:从LinkedHashMap到TreeMap与HashSet面试题实战
一、LinkedHashMap ①LinkedHashMap集合和HashMap集合的用法完全相同。 ②不过LinkedHashMap可以保证插入顺序。 ③LinkedHashMap集合因为可以保证插入顺序,因此效率比HashMap低一些。 ④LinkedHashMap是如何保证插入顺序的? 底层采用了双向链表来记…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...
使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台
🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
【深度学习新浪潮】什么是credit assignment problem?
Credit Assignment Problem(信用分配问题) 是机器学习,尤其是强化学习(RL)中的核心挑战之一,指的是如何将最终的奖励或惩罚准确地分配给导致该结果的各个中间动作或决策。在序列决策任务中,智能体执行一系列动作后获得一个最终奖励,但每个动作对最终结果的贡献程度往往…...
