当前位置: 首页 > news >正文

【C语言】结构体内存对齐问题

1.结构体内存对齐

我们已经基本掌握了结构体的使用了。那我们现在必须得知道结构体在内存中是如何存储的?内存是如何分配的?所以我们得知道如何计算结构体的大小?这就引出了我们今天所要探讨的内容:结构体内存对齐。

1.1 对齐规则

首先得掌握结构体的对齐规则:
1. 结构体的第⼀个成员对⻬到和结构体变量起始位置偏移量为0的地址处。
2. 其他成员变量要对⻬到某个数字(对⻬数)的整数倍的地址处。
对齐数 = 编译器默认的⼀个对⻬数 与 该成员变量大小的 较⼩值
- VS 中默认对齐数的值为 8
- Linux中 gcc 没有默认对⻬数,对⻬数就是成员⾃⾝的大小
3. 结构体总大小为最⼤对⻬数(结构体中每个成员变量都有⼀个对⻬数,所有对⻬数中最⼤的)的
整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体成员对⻬到⾃⼰的成员中最⼤对⻬数的整数倍处,结构
体的整体⼤⼩就是所有最⼤对⻬数(含嵌套结构体中成员的对⻬数)的整数倍。
范例1:
//范例1
struct S1
{char c1;//1 8 1int i;  //4 8 4char c2;//1 8 1
};int main()
{struct S1 s1 = { 0 };printf("%zd\n", sizeof(s1));return 0;
}

我们画图分析一下:

15aa98d199d8432ab9f0d6c61cdd4f6f.png

我们运行一下结果看看,是不是12个字节:

ad308321e09142eebe4307b078b41f7c.png

确实是12个字节,这就说明,结构体在内存存储中,存在内存对齐的原则。

范例2:

//范例2
struct S2
{char c1;char c2;int i;
};int main()
{struct S2 s2 = { 0 };printf("%zd\n", sizeof(s2));return 0;
}

同样的道理:

f4f48a75f2c14e3ba8d8a82a023c9309.png

运行结果:

3d07f9a5b61d4d03a514ca6385a888f1.png

范例3:

//范例3
struct S3
{double d;//8 8 8char c;  //1 8 1int i;   //4 8 4
};int main()
{struct S3 s3 = { 0 };printf("%zd\n", sizeof(s3));return 0;
}

08e42c74535f427aa4faf99a13703b04.png

运行结果:

7d29cbd2cc934f93bfdefabb731ff858.png

范例4:

//范例4
struct S3
{double d;//8 8 8char c;  //1 8 1int i;   //4 8 4
};struct S4
{char c1;struct S3 s3;double d;
};int main()
{struct S4 s4 = { 0 };printf("%zd\n", sizeof(s4));return 0;
}

65519e877cb049b681f6aee2312cfd28.png

运行结果:

feceb090dd354b35bc2b3479e5262748.png

1.2 为什么存在内存对齐?

⼤部分的参考资料都是这样说的:
1. 平台原因 (移植原因):
不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特定类型的数据,否则抛出硬件异常。
2.性能原因:
数据结构(尤其是栈)应该尽可能地在⾃然边界上对⻬。原因在于,为了访问未对⻬的内存,处理器需要作两次内存访问;⽽对⻬的内存访问仅需要⼀次访问。假设⼀个处理器总是从内存中取8个字节,则地 址必须是8的倍数。如果我们能保证将所有的double类型的数据的地址都对⻬成8的倍数,那么就可以⽤⼀个内存操作来读或者写值了。否则,我们可能需要执⾏两次内存访问,因为对象可能被分放在两个8字节内存块中。
总体来说:结构体的内存对⻬是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满⾜对⻬,⼜要节省空间,如何做到:
让占⽤空间⼩的成员尽量集中在⼀起
 //例如:struct S1{char c1;//1 8 1int i;  //4 8 4char c2;//1 8 1};
//sizeof(struct S1) -> 12个字节struct S2{char c1;//1 8 1char c2;//1 8 1int i;  //4 8 4};
//sizeof(struct S2) -> 8个字节

1.3 修改默认对齐数

#pragma 这个预处理指令,可以改变编译器的默认对齐数。
#include <stdio.h>#pragma pack(1)//设置默认对⻬数为1
struct S
{char c1;int i;char c2;
};
#pragma pack()//取消设置的对⻬数,还原为默认
int main()
{//输出的结果是什么?printf("%d\n", sizeof(struct S));return 0;
}
结构体在对齐方式不合适的时候,我们可以自己更改默认对齐数。

运行结果:

ab6eb5410408467199d9cc00b576a0dc.png

2.结构体传参

struct S
{int data[1000];int num;
};
struct S s = {{1,2,3,4}, 1000};
//结构体传参
void print1(struct S s)
{printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{printf("%d\n", ps->num);
}
int main()
{print1(s); //传结构体print2(&s); //传地址return 0;
}
上⾯的 print1 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。
如果传递⼀个结构体对象的时候,结构体过⼤,参数压栈的的系统开销⽐较⼤,所以会导致性能的下降。
结论:
结构体传参的时候,要传结构体的地址。

3.结构体实现位段

结构体讲完就得讲讲结构体实现位段的能力。

3.1 什么是位段

位段的声明和结构是类似的,有两个不同:
1. 位段的成员必须是 int、unsigned int 或signed int ,在C99中位段成员的类型也可以
选择其他类型。
2. 位段的成员名后边有⼀个冒号和⼀个数字。
比如:
struct A
{int _a:2;int _b:5;int _c:10;int _d:30;
};
A就是⼀个位段类型。
那位段A所占内存的大小是多少?
printf("%d\n", sizeof(struct A));

3.2 位段的内存分配

1. 位段的成员可以是 intunsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的⽅式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使⽤位段。
//⼀个例⼦
#include <stdio.h>
struct S
{char a : 3;char b : 4;char c : 5;char d : 4;
};
int main()
{struct S s = { 0 };s.a = 10;s.b = 12;s.c = 3;s.d = 4;//空间是如何开辟的?return 0;
}

f58e0bf2187f4ef3a513e6fefa651cee.png

3.3 位段的跨平台问题

1. int 位段被当成有符号数还是⽆符号数是不确定的。
2. 位段中最⼤位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会
出问题。
3. 位段中的成员在内存中从左向右分配,还是从右向左分配,标准尚未定义。
4. 当⼀个结构包含两个位段,第⼆个位段成员⽐较大,⽆法容纳于第⼀个位段剩余的位时,是舍弃
剩余的位还是利⽤,这是不确定的。
总结:
跟结构相⽐,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

3.4 位段使用的注意事项

位段的⼏个成员共有同⼀个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位置处是没有地址的。内存中每个字节分配⼀个地址,⼀个字节内部的bit位是没有地址的。
所以不能对位段的成员使⽤&操作符,这样就不能使⽤scanf直接给位段的成员输⼊值,只能是先输⼊放在⼀个变量中,然后赋值给位段的成员。
struct A
{int _a : 2;int _b : 5;int _c : 10;int _d : 30;
};
int main()
{struct A sa = {0};scanf("%d", &sa._b);//这是错误的//正确的⽰范int b = 0;scanf("%d", &b);sa._b = b;return 0;
}

相关文章:

【C语言】结构体内存对齐问题

1.结构体内存对齐 我们已经基本掌握了结构体的使用了。那我们现在必须得知道结构体在内存中是如何存储的&#xff1f;内存是如何分配的&#xff1f;所以我们得知道如何计算结构体的大小&#xff1f;这就引出了我们今天所要探讨的内容&#xff1a;结构体内存对齐。 1.1 对齐规…...

【蓝桥杯单片机】第十三届省赛第二场

一、真题 二、模块构建 1.编写初始化函数(init.c) void Cls_Peripheral(void); 关闭led led对应的锁存器由Y4C控制关闭蜂鸣器和继电器 2.编写LED函数&#xff08;led.c&#xff09; void Led_Disp(unsigned char ucLed); 将ucLed取反的值赋给P0 开启锁存器 关闭锁存…...

类与对象(5)

上一章是类与对象&#xff08;4&#xff09;-CSDN博客 深入了构造函数和静态成员&#xff0c;大概讲解了类型转换 最后一章最后一章 友元 在 C 中&#xff0c;友元提供了一种突破类的访问控制&#xff08;封装&#xff09;的方式。通过友元&#xff0c;外部的函数或类可以访…...

AI知识架构之数据采集

数据采集 数据格式: 结构化数据:以固定格式和结构存储,如数据库中的表以及 Excel 表格,易于查询和分析。半结构化数据:有一定结构但不如结构化数据严格,XML 常用于数据交换,JSON 在 Web 应用中广泛用于数据传输和存储。非结构化数据:无预定义结构,文本、图像、音频和视…...

细说STM32F407单片机2个ADC使用DMA同步采集各自的1个输入通道的方法

目录 一、示例说明 二、工程配置 1、RCC、DEBUG、CodeGenerator 2、USART6 3、TIM3 &#xff08;1&#xff09;Mode &#xff08;2&#xff09;参数设置 &#xff08;3&#xff09; TRGO &#xff08;4&#xff09;ADC1_IN0 1&#xff09;ADCs_Common_Settings 2&a…...

C# 将非托管Dll嵌入exe中(一种实现方法)

一、环境准备 电脑系统:Windows 10 专业版 20H2 IDE:Microsoft Visual Studio Professional 2022 (64 位) - Current 版本 17.11.4 其他: 二、测试目的 将基于C++创建DLL库,封装到C#生成的exe中。 一般C++创建的库,在C#中使用,都是采用DllImport导入的,且要求库处…...

完美解决:.vmx 配置文件是由 VMware 产品创建,但该产品与此版 VMware Workstation 不兼容

参考文章&#xff1a;该产品与此版 VMware Workstation 不兼容&#xff0c;因此无法使用 问题描述 当尝试使用 VMware Workstation 打开别人的虚拟机时&#xff0c;可能会遇到以下报错&#xff1a; 此问题常见于以下场景&#xff1a; 从其他 VMware 版本&#xff08;如 ESX…...

使用大语言模型对接OA系统,实现会议室预定功能

随着人工智能技术的不断进步&#xff0c;越来越多的企业开始借助 AI 助手来提高工作效率&#xff0c;尤其是在日常事务的自动化处理中。比如&#xff0c;在许多公司里&#xff0c;会议室的预定是一个常见且频繁的需求&#xff0c;通常需要员工手动检查空闲时间并做出选择。而通…...

Ryu控制器:L2交换功能实现案例

基于 Ryu控制器 在 VM1--OVS--VM2 的简单拓扑中实现流量自动下发&#xff08;流表动态安装&#xff09;的完整案例。通过该案例&#xff0c;当VM1与VM2首次通信时&#xff0c;Ryu控制器会动态学习路径并下发流表&#xff0c;后续流量将直接由交换机转发&#xff0c;无需控制器介…...

动手学深度学习2025.2.23-预备知识之-线性代数

3.线性代数 &#xff08;1&#xff09;向量维数和张量维数的区别&#xff1a; (2)普通矩阵乘法&#xff1a; 要求左矩阵的列数等于右矩阵的行数 import torch ​ # 创建两个矩阵 A torch.tensor([[1, 2], [3, 4]], dtypetorch.float32) B torch.tensor([[5, 6], [7, 8]], d…...

登录-07.JWT令牌-登录后下发令牌

一.思路 我们首先完成令牌生成。 在响应数据这一块 该响应数据是一个标准的Result结构&#xff0c;其中"data"的值就是一个JWT令牌。因此我们只需要将生成的JWT令牌封装在Result当中然后返回给前端即可。 备注是给前端看的&#xff0c;不用管。以后我们做校验时&…...

机器学习实战(7):聚类算法——发现数据中的隐藏模式

第7集&#xff1a;聚类算法——发现数据中的隐藏模式 在机器学习中&#xff0c;聚类&#xff08;Clustering&#xff09; 是一种无监督学习方法&#xff0c;用于发现数据中的隐藏模式或分组。与分类任务不同&#xff0c;聚类不需要标签&#xff0c;而是根据数据的相似性将其划…...

【数据序列化协议】Protocol Buffers

一、为什么需要序列化&#xff1f; 数据跨平台/语言交互&#xff1a; 不同编程语言&#xff08;如 Java、Python、Go&#xff09;的数据结构不兼容&#xff0c;序列化提供统一的数据表示。例如&#xff1a;Java 的 HashMap 和 Python 的 dict 需转换为通用格式&#xff08;如 …...

基于 Python 的电影市场预测分析系统设计与实现(源码 + 文档)

大家好&#xff0c;今天要和大家聊的是一款基于 Python 的“电影市场预测分析”系统的设计与实现。项目源码以及部署相关事宜请联系我&#xff0c;文末附上联系方式。 项目简介 基于 Python 的“电影市场预测分析”系统主要面向以下用户角色&#xff1a;电影制片方、电影发行…...

计算机三级网络技术知识汇总【6】

第六章 交换机及其配置 1. 交换机基础 1.1 基本概念 局域网交换机是一种基于 MAC 地址识别&#xff0c;完成转发数据帧功能的一种网络连接设备。 工作在数据链路层&#xff0c;根据进入端口数据帧中的 MAC 地址进行数据帧的过滤、转发&#xff08;也是交换机的工作原理&…...

2025教育与科研领域实战全解析:DeepSeek赋能细分场景深度指南(附全流程案例与资源)

🚀 2025教育与科研领域实战全解析:DeepSeek赋能细分场景深度指南(附全流程案例与资源)🚀 📚 目录 DeepSeek在教育与科研中的核心价值教学场景应用:从备课到课堂管理的全流程革新科研场景应用:从数据分析到论文写作的智能跃迁师生协同创新:AI赋能的个性化学习与科研…...

Linux 命令大全完整版(10)

4. 压缩与解压缩命令 gzip(gnu zip) 功能说明&#xff1a;压缩文件。语  法&#xff1a;gzip [-acdfhlLnNqrtvV][-S <压缩字尾字符串>][-<压缩效率>][–best/fast][文件…] 或 gzip [-acdfhlLnNqrtvV][-S <压缩字尾字符串>][-<压缩效率>][–best/f…...

彻底卸载kubeadm安装的k8s集群

目录 一、删除资源 二、停止k8s服务 三、重置集群 四、卸载k8s安装包 五、清理残留文件和目录 六、删除k8s相关镜像 七、重启服务器 一、删除资源 # 删除集群中的所有资源&#xff0c;包括 Pod、Deployment、Service&#xff0c;任意节点执行 kubectl delete --all pod…...

vue+element-plus简洁完美实现淘宝网站模板

目录 一、项目介绍 二、项目截图 1.项目结构图 2.首页 3.详情 4.购物车 5.登陆页 三、源码实现 1.路由配置 2.依赖包 四、总结 一、项目介绍 项目在线预览&#xff1a;点击访问 本项目为vue项目&#xff0c;参考淘宝官方样式为主题来设计元素&#xff0c;简洁美观&…...

学习aigc

DALLE2 论文 Hierarchical Text-Conditional Image Generation with CLIP Latents [2204.06125] Hierarchical Text-Conditional Image Generation with CLIP LatentsAbstract page for arXiv paper 2204.06125: Hierarchical Text-Conditional Image Generation with CLIP L…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

ios苹果系统,js 滑动屏幕、锚定无效

现象&#xff1a;window.addEventListener监听touch无效&#xff0c;划不动屏幕&#xff0c;但是代码逻辑都有执行到。 scrollIntoView也无效。 原因&#xff1a;这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作&#xff0c;从而会影响…...

均衡后的SNRSINR

本文主要摘自参考文献中的前两篇&#xff0c;相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程&#xff0c;其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt​ 根发送天线&#xff0c; n r n_r nr​ 根接收天线的 MIMO 系…...

推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)

推荐 github 项目:GeminiImageApp(图片生成方向&#xff0c;可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

SpringAI实战:ChatModel智能对话全解

一、引言&#xff1a;Spring AI 与 Chat Model 的核心价值 &#x1f680; 在 Java 生态中集成大模型能力&#xff0c;Spring AI 提供了高效的解决方案 &#x1f916;。其中 Chat Model 作为核心交互组件&#xff0c;通过标准化接口简化了与大语言模型&#xff08;LLM&#xff0…...

Spring Boot + MyBatis 集成支付宝支付流程

Spring Boot MyBatis 集成支付宝支付流程 核心流程 商户系统生成订单调用支付宝创建预支付订单用户跳转支付宝完成支付支付宝异步通知支付结果商户处理支付结果更新订单状态支付宝同步跳转回商户页面 代码实现示例&#xff08;电脑网站支付&#xff09; 1. 添加依赖 <!…...