当前位置: 首页 > news >正文

API接口设计模式:从分层架构到CQRS的实战应用

以下将从分层架构和 CQRS(命令查询职责分离)的基本概念入手,为你阐述从分层架构到 CQRS 的实战应用相关内容:

分层架构

  • 概念:分层架构是将系统按照功能划分为不同的层次,每个层次负责特定的职责,并且各层次之间存在明确的依赖关系。常见的分层包括表示层、业务逻辑层、数据访问层等。表示层负责与用户交互,展示数据和接收用户输入;业务逻辑层处理业务规则和流程;数据访问层负责与数据库等数据存储进行交互,实现数据的持久化和读取。
  • 实战应用
    • 表示层:可以使用各种前端技术框架如 Vue.js、React 等来构建用户界面,通过 API 接口与后端进行数据交互。
    • 业务逻辑层:使用 Spring Boot 等框架来实现业务逻辑,对表示层传来的请求进行处理,调用数据访问层的方法获取或操作数据,并进行相应的业务规则验证和处理。
    • 数据访问层:可以使用 MyBatis、Hibernate 等持久层框架来与数据库进行交互,实现数据的增删改查操作。

CQRS

  • 概念:CQRS 是一种架构模式,它将系统中的读操作和写操作分离,分别使用不同的模型和流程来处理。命令(Command)用于处理写操作,负责更新数据;查询(Query)用于处理读操作,负责获取数据。这种分离可以提高系统的性能、可扩展性和维护性,尤其适用于读写操作频率差异较大、业务逻辑复杂的系统。
  • 实战应用
    • 命令端:当用户执行创建、更新或删除操作时,会发送相应的命令。例如,在一个电商系统中,用户下订单就是一个命令操作。命令会经过命令处理器进行处理,命令处理器会调用相应的领域服务和数据访问层来更新数据库中的订单信息等。
    • 查询端:当用户需要查询数据时,会发送查询请求。比如查询订单列表、商品信息等。查询端可以使用专门的查询模型和数据访问策略来优化查询性能,例如可以使用缓存、物化视图等技术来提高查询速度。

从分层架构到 CQRS 的过渡

  • 分析业务场景:首先需要对业务系统进行全面的分析,确定哪些业务操作属于读操作,哪些属于写操作,以及它们的频率和复杂程度。对于读写操作差异较大、写操作可能会带来复杂业务逻辑和数据一致性问题的场景,适合引入 CQRS。
  • 分离命令和查询模型:在原有的分层架构基础上,将业务逻辑层中的读和写操作分离,分别建立命令模型和查询模型。命令模型负责处理写操作,包含与写操作相关的业务逻辑和数据更新操作;查询模型负责处理读操作,专注于数据的查询和展示。
  • 设计命令和查询的处理流程:为命令和查询分别设计独立的处理流程。命令流程通常包括命令的接收、验证、执行和结果反馈;查询流程则包括查询的接收、执行和结果返回。可以使用消息队列、事件驱动等机制来实现命令和查询的异步处理,提高系统的性能和响应速度。
  • 数据同步和一致性处理:由于读和写操作分离,可能会导致数据在命令端和查询端之间的不一致性。需要采用适当的数据同步策略来保证数据的一致性,如使用事件溯源、分布式事务、数据缓存更新等技术。

实战案例

以一个博客系统为例,在分层架构下,用户发表文章可能在业务逻辑层统一处理,既要更新文章数据到数据库,又要返回相关信息给用户展示。引入 CQRS 后,发表文章成为一个命令,由命令端负责将文章数据持久化到数据库,并发布一个文章创建事件。查询端订阅这个事件,更新用于查询的文章列表缓存或物化视图等,以便用户能快速查询到最新的文章列表。这样,读操作和写操作可以根据各自的需求进行独立优化,提高系统整体性能和可维护性。

相关文章:

API接口设计模式:从分层架构到CQRS的实战应用

以下将从分层架构和 CQRS(命令查询职责分离)的基本概念入手,为你阐述从分层架构到 CQRS 的实战应用相关内容: 分层架构 概念:分层架构是将系统按照功能划分为不同的层次,每个层次负责特定的职责&#xff0c…...

【机器学习】【KMeans聚类分析实战】用户分群聚类详解——SSE、CH 指数、SC全解析,实战电信客户分群案例

1.引言 在实际数据分析中,聚类算法常用于客户分群、图像分割等场景。如何确定聚类数 k 是聚类分析中的关键问题之一。本文将以“用户分群”为例,展示如何通过 KMeans 聚类,利用 SSE(误差平方和,也称 Inertia&#xff…...

【C++】 时间库chrono计算程序运行时间

C 时间库chrono计算程序运行时间 本文总结了chrono库的引入方法以及计算程序片段运行时间的方法 一、chrono库的引入方法&#xff08;注意事项&#xff09; 首先chrono是属于std命名空间的。 所以在程序中应该这样包含头文件&#xff1a; #include <chrono> using n…...

PCL 边界体积层次结构(Boundary Volume Hierarchy, BVH)

文章目录 一、简介二、实现代码三、实现效果参考资料一、简介 边界体积层次结构(Boundary Volume Hierarchy, BVH) 是一种高效的空间数据结构,广泛应用于计算机图形学、计算机视觉、机器人学、物理仿真等领域。它的核心思想是通过将空间递归地划分为层次化的包围体(通常是轴…...

算法随笔_58: 队列中可以看到的人数

上一篇:算法随笔_57 : 游戏中弱角色的数量-CSDN博客 题目描述如下: 有 n 个人排成一个队列&#xff0c;从左到右 编号为 0 到 n - 1 。给你以一个整数数组 heights &#xff0c;每个整数 互不相同&#xff0c;heights[i] 表示第 i 个人的高度。 一个人能 看到 他右边另一个人…...

创建React项目的三个方式

创建React项目 创建一个React项目非常简单&#xff0c;通常有几种方法可以进行&#xff0c;下面是最常见的几种方法&#xff1a; 1. 使用 create-react-app (已经不被推荐了) create-react-app 是一个官方的脚手架工具&#xff0c;用于快速创建 React 项目。它会为你配置好很…...

QT闲记-工具栏

工具栏通常用来放置常用的操作按钮,如QPushButton,QAction等。可以放置在顶部,底部,左侧,右侧,并且支持拖曳,浮动。 1、创建工具栏 通常通过QMainWindow 提供的addToolBar()来创建,它跟菜单栏一样,如果需要工具栏,一般情况下,我们设置这个类的基类为QMainWindow。 …...

为什么继电器要加一个反向并联一个二极管

1 动感就是电流不突变 2 为什么有的继电器上面要反向并联一个二极管和电阻 1 并联二极管是为消除掉动感产生的高压 2 加上二极管是为了让继电器更快的断开&#xff08;二极管选型的工作电流要大于动感电流&#xff0c;开关要够快&#xff09; 3 公式&#xff1a;二极管压降0…...

【Leetcode 每日一题 - 扩展】1512. 好数对的数目

问题背景 给你一个整数数组 n u m s nums nums。 如果一组数字 ( i , j ) (i,j) (i,j) 满足 n u m s [ i ] n u m s [ j ] nums[i] nums[j] nums[i]nums[j] 且 i < j i < j i<j&#xff0c;就可以认为这是一组 好数对 。 返回好数对的数目。 数据约束 1 ≤ n …...

vue3 采用xlsx库实现本地上传excel文件,前端解析为Json数据

需求&#xff1a;本地上传excel 文件&#xff0c;但需要对excel 文件的内容进行解析&#xff0c;然后展示出来 1. 安装依赖 首先&#xff0c;确保安装了 xlsx 库&#xff1a; bash复制 npm install xlsx 2. 创建 Vue 组件 创建一个 Vue 组件&#xff08;如 ExcelUpload.v…...

计算机视觉:经典数据格式(VOC、YOLO、COCO)解析与转换(附代码)

第一章&#xff1a;计算机视觉中图像的基础认知 第二章&#xff1a;计算机视觉&#xff1a;卷积神经网络(CNN)基本概念(一) 第三章&#xff1a;计算机视觉&#xff1a;卷积神经网络(CNN)基本概念(二) 第四章&#xff1a;搭建一个经典的LeNet5神经网络(附代码) 第五章&#xff1…...

FPGA DSP:Vivado 中带有 DDS 的 FIR 滤波器

本文使用 DDS 生成三个信号&#xff0c;并在 Vivado 中实现低通滤波器。低通滤波器将滤除相关信号。 介绍 用DDS生成三个信号&#xff0c;并在Vivado中实现低通滤波器。低通滤波器将滤除较快的信号。 本文分为几个主要部分&#xff1a; 信号生成&#xff1a;展示如何使用DDS&am…...

记录此刻:历时两月,初步实现基于FPGA的NVMe SSD固态硬盘存储控制器设计!

背景 为满足实验室横向项目需求&#xff0c;在2024年12月中下旬导师提出基于FPGA的NVMe SSD控制器研发项目。项目核心目标为&#xff1a;通过PCIe 3.0 x4接口实现单盘3000MB/s的持续读取速率。 实现过程 调研 花了半个月的时间查阅了一些使用FPGA实现NVME SSD控制器的论文、…...

【计算机网络】OSI模型、TCP/IP模型、路由器、集线器、交换机

一、计算机网络分层结构 计算机网络分层结构 指将计算机网络的功能划分为多个层次&#xff0c;每个层次都有其特定的功能和协议&#xff0c;并且层次之间通过接口进行通信。 分层设计的优势&#xff1a; 模块化&#xff1a;各层独立发展&#xff08;如IPv4→IPv6&#xff0c…...

正点原子[第三期]Arm(iMX6U)Linux系统移植和根文件系统构建-5.3 xxx_defconfig过程

前言&#xff1a; 本文是根据哔哩哔哩网站上“arm(iMX6U)Linux系统移植和根文件系统构键篇”视频的学习笔记&#xff0c;在这里会记录下正点原子 I.MX6ULL 开发板的配套视频教程所作的实验和学习笔记内容。本文大量引用了正点原子教学视频和链接中的内容。 引用&#xff1a; …...

250223-Linux/MacOS如何跳过Miniconda的条款阅读,直接安装Miniconda

你可以通过将 -b 参数传递给 Miniconda 的安装脚本&#xff0c;来跳过条款阅读并自动同意许可条款。这样安装会自动进行到下一步的选择项。下面是具体的安装命令&#xff1a; bash Miniconda3-latest-Linux-x86_64.sh -b这里的 -b 代表“批量模式”&#xff08;batch mode&…...

点云的几何特征

点云的几何特征是基于一个点周围的邻域对该点周围几何形状的描述。例如&#xff0c;位于墙面上的一个点将具有较高的平面度planarity。 基于局部点云的特征值 λ1、λ2 和 λ3 以及特征向量 e1、e2 和e3计算得到的一系列几何特征&#xff0c;这些特征用于描述点云中点的局部几…...

月之暗面新发布: MUON 在 LLM 训练中的可扩展性

MUON 在 LLM 训练中的可扩展性 摘要 最近&#xff0c;基于矩阵正交化的 Muon 优化器&#xff08;K. Jordan 等人&#xff0c;2024 年&#xff09;在训练小型语言模型方面表现出色&#xff0c;但其在更大规模模型上的可扩展性尚未得到验证。我们确定了 Muon 放大的两个关键技术…...

10.Docker 仓库管理

Docker 仓库管理 Docker 仓库管理 Docker 仓库管理 Docker 仓库&#xff0c;类似于 yum 仓库&#xff0c;是用来保存镜像的仓库。为了方便的管理和使用 docker 镜像,可以将镜像集中保存至 Docker 仓库中&#xff0c;将制作好的镜像 push 到仓库集中保存&#xff0c;在需要镜像…...

Deepseek存算分离安全部署手册

Deepseek大火后&#xff0c;很多文章教大家部署Dfiy和ollamadeepseek&#xff0c;但是大部分都忽略了数据安全问题&#xff0c;本文重点介绍Deepseek存算分裂安全架设&#xff0c;GPU云主机只负责计算、CPU本地主机负责数据存储&#xff0c;确保数据不上云&#xff0c;保证私有…...

PHP和Node.js哪个更爽?

先说结论&#xff0c;rust完胜。 php&#xff1a;laravel&#xff0c;swoole&#xff0c;webman&#xff0c;最开始在苏宁的时候写了几年php&#xff0c;当时觉得php真的是世界上最好的语言&#xff0c;因为当初活在舒适圈里&#xff0c;不愿意跳出来&#xff0c;就好比当初活在…...

Debian系统简介

目录 Debian系统介绍 Debian版本介绍 Debian软件源介绍 软件包管理工具dpkg dpkg核心指令详解 安装软件包 卸载软件包 查询软件包状态 验证软件包完整性 手动处理依赖关系 dpkg vs apt Debian系统介绍 Debian 和 Ubuntu 都是基于 Debian内核 的 Linux 发行版&#xff…...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问&#xff08;基础概念问题&#xff09; 1. 请解释Spring框架的核心容器是什么&#xff1f;它在Spring中起到什么作用&#xff1f; Spring框架的核心容器是IoC容器&#…...

Mysql8 忘记密码重置,以及问题解决

1.使用免密登录 找到配置MySQL文件&#xff0c;我的文件路径是/etc/mysql/my.cnf&#xff0c;有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配

目录 一、C 内存的基本概念​ 1.1 内存的物理与逻辑结构​ 1.2 C 程序的内存区域划分​ 二、栈内存分配​ 2.1 栈内存的特点​ 2.2 栈内存分配示例​ 三、堆内存分配​ 3.1 new和delete操作符​ 4.2 内存泄漏与悬空指针问题​ 4.3 new和delete的重载​ 四、智能指针…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...

STM32HAL库USART源代码解析及应用

STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...