《Keras 2 :使用 RetinaNet 进行对象检测》:此文为AI自动翻译
《Keras 2 :使用 RetinaNet 进行对象检测》
作者:Srihari Humbarwadi
创建日期:2020/05/17
最后修改日期:2023/07/10
描述:实施 RetinaNet:用于密集对象检测的焦点损失。
在 Colab 中查看 •
介绍
目标检测是计算机中非常重要的问题 视觉。在这里,模型的任务是定位 图像,同时将它们分为不同的类别。 对象检测模型大致可分为“单阶段”和 “两级”探测器。两级检测器通常更准确,但在 变慢的代价。在此示例中,我们将实现 RetinaNet, 一种流行的单级检测器,准确且运行速度快。 RetinaNet 使用特征金字塔网络来有效地检测 多个尺度,并引入了一种新的损失,即 Focal loss 函数,以减轻 极端的前景-背景阶级不平衡问题。
引用:
- RetinaNet 纸
- 特征金字塔网络论文
import os
import re
import zipfileimport numpy as np
import tensorflow as tf
from tensorflow import kerasimport matplotlib.pyplot as plt
import tensorflow_datasets as tfds
下载 COCO2017 数据集
对包含大约 118k 张图像的整个 COCO2017 数据集进行训练需要一个 ),因此我们将使用 ~500 张图像的较小子集 trained 在此示例中。
url = "https://github.com/srihari-humbarwadi/datasets/releases/download/v0.1.0/data.zip"
filename = os.path.join(os.getcwd(), "data.zip")
keras.utils.get_file(filename, url)with zipfile.ZipFile("data.zip", "r") as z_fp:z_fp.extractall("./")
Downloading data from https://github.com/srihari-humbarwadi/datasets/releases/download/v0.1.0/data.zip 560529408/560525318 [==============================] - 7s 0us/step 560537600/560525318 [==============================] - 7s 0us/step 实现实用程序函数
边界框可以用多种方式表示,最常见的格式是:
- 存储角的坐标
[xmin, ymin, xmax, ymax] - 存储中心和框尺寸的坐标
[x, y, width, height]
由于我们需要这两种格式,因此我们将实现用于转换 在格式之间。
def swap_xy(boxes):"""Swaps order the of x and y coordinates of the boxes. Arguments:
boxes: A tensor with shape `(num_boxes, 4)` representing bounding boxes. Returns:
swapped boxes with shape same as that of boxes.
"""return tf.stack([boxes[:, 1], boxes[:, 0], boxes[:, 3], boxes[:, 2]], axis=-1)def convert_to_xywh(boxes):"""Changes the box format to center, width and height. Arguments:
boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)`
representing bounding boxes where each box is of the format
`[xmin, ymin, xmax, ymax]`. Returns:
converted boxes with shape same as that of boxes.
"""return tf.concat([(boxes[..., :2] + boxes[..., 2:]) / 2.0, boxes[..., 2:] - boxes[..., :2]],axis=-1,)def convert_to_corners(boxes):"""Changes the box format to corner coordinates Arguments:
boxes: A tensor of rank 2 or higher with a shape of `(..., num_boxes, 4)`
representing bounding boxes where each box is of the format
`[x, y, width, height]`. Returns:
converted boxes with shape same as that of boxes.
"""return tf.concat([boxes[..., :2] - boxes[..., 2:] / 2.0, boxes[..., :2] + boxes[..., 2:] / 2.0],axis=-1,)
计算成对交并集 (IOU)
正如我们将在示例后面看到的那样,我们将分配真值框 以根据重叠范围锚定框。这将要求我们 计算所有锚点之间的交并比 (IOU) 框和真实框对。
def compute_iou(boxes1, boxes2):"""Computes pairwise IOU matrix for given two sets of boxes Arguments:
boxes1: A tensor with shape `(N, 4)` representing bounding boxes
where each box is of the format `[x, y, width, height]`.
boxes2: A tensor with shape `(M, 4)` representing bounding boxes
where each box is of the format `[x, y, width, height]`. Returns:
pairwise IOU matrix with shape `(N, M)`, where the value at ith row
jth column holds the IOU between ith box and jth box from
boxes1 and boxes2 respectively.
"""boxes1_corners = convert_to_corners(boxes1)boxes2_corners = convert_to_corners(boxes2)lu = tf.maximum(boxes1_corners[:, None, :2], boxes2_corners[:, :2])rd = tf.minimum(boxes1_corners[:, None, 2:], boxes2_corners[:, 2:])intersection = tf.maximum(0.0, rd - lu)intersection_area = intersection[:, :, 0] * intersection[:, :, 1]boxes1_area = boxes1[:, 2] * boxes1[:, 3]boxes2_area = boxes2[:, 2] * boxes2[:, 3]union_area = tf.maximum(boxes1_area[:, None] + boxes2_area - intersection_area, 1e-8)return tf.clip_by_value(intersection_area / union_area, 0.0, 1.0)def visualize_detections(image, boxes, classes, scores, figsize=(7, 7), linewidth=1, color=[0, 0, 1]
):"""Visualize Detections"""image = np.array(image, dtype=np.uint8)plt.figure(figsize=figsize)plt.axis("off")plt.imshow(image)ax = plt.gca()for box, _cls, score in zip(boxes, classes, scores):text = "{}: {:.2f}".format(_cls, score)x1, y1, x2, y2 = boxw, h = x2 - x1, y2 - y1patch = plt.Rectangle([x1, y1], w, h, fill=False, edgecolor=color, linewidth=linewidth)ax.add_patch(patch)ax.text(x1,y1,text,bbox={"facecolor": color, "alpha": 0.4},clip_box=ax.clipbox,clip_on=True,)plt.show()return ax
实现 Anchor 生成器
锚框是模型用于预测边界的固定大小的框 对象的框。它通过回归位置 对象的中心和锚框的中心,然后使用宽度 和锚点框的高度来预测对象的相对比例。在 在 RetinaNet 的情况下,给定特征图上的每个位置都有 9 个锚框 (三个比例和三个比率)。
class AnchorBox:"""Generates anchor boxes. This class has operations to generate anchor boxes for feature maps at
strides `[8, 16, 32, 64, 128]`. Where each anchor each box is of the
format `[x, y, width, height]`. Attributes:
aspect_ratios: A list of float values representing the aspect ratios of
the anchor boxes at each location on the feature map
scales: A list of float values representing the scale of the anchor boxes
at each location on the feature map.
num_anchors: The number of anchor boxes at each location on feature map
areas: A list of float values representing the areas of the anchor
boxes for each feature map in the feature pyramid.
strides: A list of float value representing the strides for each feature
map in the feature pyramid.
"""def __init__(self):self.aspect_ratios = [0.5, 1.0, 2.0]self.scales = [2 ** x for x in [0, 1 / 3, 2 / 3]]self._num_anchors = len(self.aspect_ratios) * len(self.scales)self._strides = [2 ** i for i in range(3, 8)]self._areas = [x ** 2 for x in [32.0, 64.0, 128.0, 256.0, 512.0]]self._anchor_dims = self._compute_dims()def _compute_dims(self):"""Computes anchor box dimensions for all ratios and scales at all levels
of the feature pyramid.
"""anchor_dims_all = []for area in self._areas:anchor_dims = []for ratio in self.aspect_ratios:anchor_height = tf.math.sqrt(area / ratio)anchor_width = area / anchor_heightdims = tf.reshape(tf.stack([anchor_width, anchor_height], axis=-1), [1, 1, 2])for scale in self.scales:anchor_dims.append(scale * dims)anchor_dims_all.append(tf.stack(anchor_dims, axis=-2))return anchor_dims_alldef _get_anchors(
相关文章:
《Keras 2 :使用 RetinaNet 进行对象检测》:此文为AI自动翻译
《Keras 2 :使用 RetinaNet 进行对象检测》 作者:Srihari Humbarwadi 创建日期:2020/05/17 最后修改日期:2023/07/10 描述:实施 RetinaNet:用于密集对象检测的焦点损失。 (i) 此示例使用 Keras 2 在 Colab 中查看 • 介绍 目标检测是计算机中非常重要的问题 视觉。在…...
【Erdas实验教程】010:监督分类及后处理、精度评价
文章目录 一、监督分类介绍二、监督分类流程1. 定义分类模板2. 评价分类模板3. 执行监督分类4. 评价分类结果4.1 叠加显示4.2 动态窗口链接4.3 阈值处理4.4 分类精度评价5. 分类后处理5.1 集聚处理5.2 滤网分析5.3 去除分析5.4 重编码一、监督分类介绍 遥感图像计算机分类的依…...
Moonshot AI 新突破:MoBA 为大语言模型长文本处理提效论文速读
前言 在自然语言处理领域,随着大语言模型(LLMs)不断拓展其阅读、理解和生成文本的能力,如何高效处理长文本成为一项关键挑战。近日,Moonshot AI Research 联合清华大学、浙江大学的研究人员提出了一种创新方法 —— 混…...
【Python量化金融实战】-第1章:Python量化金融概述:1.2 Python在量化金融中的优势与生态
本小节学习建议:Python在量化金融领域的统治地位不仅体现在当前的技术栈中,更在于其持续进化的能力。随着AI、区块链等新技术的融合,Python开发者将始终处于金融创新的最前沿。建议学习者从构建完整的策略生产线开始,逐步深入高频…...
react路由总结
目录 一、脚手架基础语法(16~17) 1.1、hello react 1.2、组件样式隔离(样式模块化) 1.3、react插件 二、React Router v5 2.1、react-router-dom相关API 2.1.1、内置组件 2.1.1.1、BrowserRouter 2.1.1.2、HashRouter 2.1.1.3、Route 2.1.1.4、Redirect 2.1.1.5、L…...
edge浏览器将书签栏顶部显示
追求效果,感觉有点丑,但总归方便多了 操作路径:设置-外观-显示收藏夹栏-始终...
AIGC-Stable Diffusion模型介绍
Stable Diffusion模型介绍 Stable Diffusion模型介绍模型架构Stable Diffusion模型特点 模型原理扩散过程 代码示例 Stable Diffusion模型介绍 Stable Diffusion是一种基于深度学习的图像生成模型,特别适用于生成高质量的图像。它利用扩散模型(diffusio…...
【算法】游艇租贷
问题 ⻓江游艇俱乐部在⻓江上设置了 n 个游艇租聘站,游客可以在这些租聘站租 ⽤游艇,然后在下游的任何⼀个租聘站归还。游艇出租站 i 到 j 的租⾦为 r(i, j),1 ≤i< j≤n,设计⼀个算法,计算从出租站 i 到 j 所需的…...
科普:Docker run的相关事项
一、镜像名(含标签)太长 如,通过如下命令行: docker pull designthru2019/dify:56c6d1af0944dbdb5e0115cb623ff0e118a4ac62拉取的镜像名(及标签)太长,可以通过改名的方法变短。 在 Docker 中&…...
Ryu:轻量开源,开启 SDN 新程
1. Ryu 控制器概述 定位:轻量级、开源的SDN控制器,专为开发者和研究人员设计,基于Python实现。开发者:由日本NTT实验室主导开发,遵循Apache 2.0开源协议。核心理念:简化SDN应用开发,提供友好的…...
Python游戏编程之赛车游戏6-2
3.2 move()方法的定义 Player类的move()方法用于玩家控制汽车左右移动,当玩家点击键盘上的左右按键时,汽车会相应地进行左右移动。 move()方法的代码如图7所示。 图7 move()方法的代码 其中,第20行代码通过pygame.key.get_pressed()函数获…...
IDEA + 通义灵码AI程序员:快速构建DDD后端工程模板
作者:陈荣健 IDEA 通义灵码AI程序员:快速构建DDD后端工程模板 在软件开发过程中,一个清晰、可维护、可扩展的架构至关重要。领域驱动设计 (DDD) 是一种软件开发方法,它强调将软件模型与业务领域紧密结合,从而构建更…...
libwebsockets交叉编译全流程
libwebsocket中的webscoket加密功能需要依赖于Openssl库因此需要提前准备好openssl开源库。 交叉编译openssl 下面演示源码方式交叉编译OpenSSL为动态库。 创建个Websocket文件夹,把后续的成果物均放在这个文件中,文件夹中创建子文件夹OpenSSL和libWeb…...
蓝思科技赋能灵伴科技:AI眼镜产能与供应链双升级
2月22日,蓝思科技宣布与AI交互领军企业杭州灵伴科技(Rokid)达成深度战略合作,通过整机组装与全产业链整合,为2025年全球AI眼镜出货量爆发式增长(预计达400万-1200万台)提供核心支撑。 双方合作通…...
谷歌浏览器更新后导致的刷新数据无法显示
这几天突然出现的问题,就是我做了一个网站,一直用Google展示,前两天突然就是刷新会丢失数据,然后再刷新几次吧又有了,之前一直好好的,后端也做了一些配置添加了CrossOrigin注解,然而换了edge浏览…...
Nginx学习笔记:常用命令端口占用报错解决Nginx核心配置文件解读
Nginx 1. 基础命令1.1 重新加载systemd配置1.2 停止Nginx服务1.3 启动Nginx服务1.4 重启Nginx服务1.5 查看Nginx服务状态1.6 测试配置和重载Nginx 2. 额外命令2.1 启用开机自启2.2 禁用开机自启2.3 强制关闭所有Nginx进程 3. Nginx端口占用解决方案3.1 查找占用端口8090的进程3…...
Pinia 3.0 正式发布:全面拥抱 Vue 3 生态,升级指南与实战教程
一、重大版本更新解析 2024年2月11日,Vue 官方推荐的状态管理库 Pinia 迎来 3.0 正式版发布,本次更新标志着其全面转向 Vue 3 技术生态。以下是开发者需要重点关注的升级要点: 1.1 核心变更说明 特性3.0 版本要求兼容性说明Vue 支持Vue 3.…...
at32f103a+rtt+AT组件+esp01s 模块使用
AT组件使用 这里需要设置wifi名称和密码 配置使用的串口 配置上边的自动会配置,at_device 依赖了at_client 依赖sal也自动加入 依赖了串口2 uart2 连接WiFi AT+ CWJAP = TP-LINK_45A1...
EasyRTC:全平台支持与自研算法驱动的智能音视频通讯解决方案
在智能硬件的浪潮中,设备之间的互联互通已成为提升用户体验的核心需求。无论是智能家居、智能办公,还是工业物联网,高效的音视频通讯和交互能力是实现智能化的关键。然而,传统音视频解决方案往往面临平台兼容性差、交互体验不佳以…...
Spring 实战技术文档
一、引言 Spring 是一个轻量级的 Java 开发框架,它为企业级开发提供了全面的解决方案,涵盖了从依赖注入、面向切面编程到 Web 开发、数据访问等多个方面。本技术文档旨在通过一个具体的实战项目,详细介绍 Spring 框架的核心特性和使用方法,帮助开发者更好地掌握 Spring 框架…...
19c补丁后oracle属主变化,导致不能识别磁盘组
补丁后服务器重启,数据库再次无法启动 ORA01017: invalid username/password; logon denied Oracle 19c 在打上 19.23 或以上补丁版本后,存在与用户组权限相关的问题。具体表现为,Oracle 实例的运行用户(oracle)和集…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...
k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
Redis数据倾斜问题解决
Redis 数据倾斜问题解析与解决方案 什么是 Redis 数据倾斜 Redis 数据倾斜指的是在 Redis 集群中,部分节点存储的数据量或访问量远高于其他节点,导致这些节点负载过高,影响整体性能。 数据倾斜的主要表现 部分节点内存使用率远高于其他节…...
