当前位置: 首页 > news >正文

实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能

下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行:

步骤1:定义二阶电机数学模型

考虑一个带有迟滞影响的二阶电机数学模型,其一般形式可以表示为:
y ¨ ( t ) + a 1 y ˙ ( t ) + a 0 y ( t ) = u ( t ) + d ( t ) + h ( t ) \ddot{y}(t) + a_1\dot{y}(t) + a_0y(t) = u(t) + d(t) + h(t) y¨(t)+a1y˙(t)+a0y(t)=u(t)+d(t)+h(t)
其中, y ( t ) y(t) y(t) 是电机的输出, u ( t ) u(t) u(t) 是控制输入, d ( t ) d(t) d(t) 是非线性干扰, h ( t ) h(t) h(t) 是迟滞影响。

步骤2:RBF神经网络模拟非线性干扰

RBF神经网络是一种前馈神经网络,其输出可以表示为:
d ^ ( t ) = ∑ i = 1 N w i φ ( ∥ x ( t ) − c i ∥ ) \hat{d}(t) = \sum_{i=1}^{N} w_i\varphi(\left\lVert x(t) - c_i\right\rVert) d^(t)=i=1Nwiφ(x(t)ci)
其中, w i w_i wi 是权重, φ \varphi φ 是径向基函数(通常使用高斯函数), c i c_i ci 是中心, x ( t ) x(t) x(t) 是输入向量。

步骤3:WNN预测非线性函数

小波神经网络是一种结合了小波变换和神经网络的模型,用于预测模型中的非线性函数。

代码实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.neural_network import MLPRegressor
from pywt import wavedec# 定义二阶电机数学模型
def second_order_motor_model(y, u, d, h, a0, a1):y_dot = np.zeros(2)y_dot[0] = y[1]y_dot[1] = -a0 * y[0] - a1 * y[1] + u + d + hreturn y_dot# 定义RBF神经网络模拟非线性干扰
def rbf_network(x, centers, weights, sigma):N = len(centers)phi = np.zeros(N)for i in range(N):phi[i] = np.exp(-np.linalg.norm(x - centers[i])**2 / (2 * sigma**2))return np.dot(weights, phi)# 定义WNN预测非线性函数
def wnn_predict(x, model):# 这里简单使用MLPRegressor作为示例return model.predict([x])[0]# 模拟参数
T = 10  # 模拟时间
dt = 0.01  # 时间步长
t = np.arange(0, T, dt)
N = len(t)# 模型参数
a0 = 1.0
a1 = 0.5# 初始化状态
y = np.zeros((N, 2))
y[0] = [0, 0]# 控制输入
u = np.sin(2 * np.pi * 0.5 * t)# 非线性干扰和迟滞影响
d = 0.5 * np.sin(2 * np.pi * 1.5 * t)
h = 0.2 * np.sign(np.sin(2 * np.pi * 2 * t))# RBF神经网络参数
N_rbf = 10  # RBF神经元数量
centers = np.random.rand(N_rbf, 2)
weights = np.random.rand(N_rbf)
sigma = 0.1# WNN模型训练
X_wnn = np.column_stack((y[:, 0], y[:, 1], u))
y_wnn = -a0 * y[:, 0] - a1 * y[:, 1] + u + d + h
wnn_model = MLPRegressor(hidden_layer_sizes=(10,), activation='relu', max_iter=1000)
wnn_model.fit(X_wnn, y_wnn)# 模拟过程
for i in range(1, N):# 预测非线性干扰d_hat = rbf_network(y[i-1], centers, weights, sigma)# 预测非线性函数f_hat = wnn_predict(np.concatenate((y[i-1], [u[i-1]])), wnn_model)# 抵消影响u_compensated = u[i-1] - d_hat - f_hat# 更新状态y_dot = second_order_motor_model(y[i-1], u_compensated, d[i-1], h[i-1], a0, a1)y[i] = y[i-1] + y_dot * dt# 绘制结果
plt.figure(figsize=(12, 6))
plt.subplot(2, 1, 1)
plt.plot(t, y[:, 0], label='Output')
plt.xlabel('Time (s)')
plt.ylabel('Output')
plt.legend()plt.subplot(2, 1, 2)
plt.plot(t, u, label='Control Input')
plt.xlabel('Time (s)')
plt.ylabel('Control Input')
plt.legend()plt.tight_layout()
plt.show()

代码解释

  1. 二阶电机数学模型second_order_motor_model 函数定义了二阶电机的动力学方程。
  2. RBF神经网络rbf_network 函数实现了RBF神经网络的计算,用于模拟非线性干扰。
  3. WNN预测wnn_predict 函数使用 MLPRegressor 作为WNN的示例,用于预测非线性函数。
  4. 模拟过程:在模拟过程中,首先使用RBF神经网络预测非线性干扰,然后使用WNN预测非线性函数,最后将其从控制输入中抵消,更新系统状态。
  5. 结果绘制:使用 matplotlib 绘制系统的输出和控制输入。

注意事项

  • 代码中的RBF神经网络和WNN只是简单示例,实际应用中可能需要更复杂的网络结构和训练方法。
  • 非线性干扰和迟滞影响的具体形式可以根据实际情况进行调整。

相关文章:

实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能

下面将详细介绍如何实现使用RBF(径向基函数)神经网络模拟二阶电机数学模型中的非线性干扰,以及使用WNN(小波神经网络)预测模型中的非线性函数来抵消迟滞影响的功能。我们将按照以下步骤进行: 步骤1&#x…...

潜水泵,高效排水,守护城市与农田|深圳鼎跃

洪水是常见的自然灾害,在春夏季节的我国降水多为丰富,容易造成城市内部的洪涝灾害。特别是低洼地区的积水,不仅容易造成城市交通的出行不便,还存在潜在的隐患,严重影响了人们正常生活。 潜水泵作为一种高效、可靠的排水…...

易基因:RNA甲基化修饰和R-loop的交叉调控:从分子机制到临床意义|深度综述

大家好,这里是专注表观组学十余年,领跑多组学科研服务的易基因。 R-loop(RNA-DNA杂合结构)是转录调控、DNA复制和修复等关键细胞过程的重要组成部分。但R-loop异常积累可能会破坏基因组完整性,从而导致多种疾病的发生…...

115 道 MySQL 面试题,从简单到深入!

1. 什么是数据库事务? 数据库事务是一个作为单个逻辑工作单元执行的一系列操作。事务具有ACID属性,即原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性&#xf…...

一周学会Flask3 Python Web开发-flask3上下文全局变量session,g和current_app

锋哥原创的Flask3 Python Web开发 Flask3视频教程: 2025版 Flask3 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili flask3提供了session,g和current_app上下文全局变量来方便我们操作访问数据。 以下是一个表格,用于比较Flask中的…...

MFC学习笔记-1

一、编辑框和按钮 //.h文件private:CString str;//给窗口类加了一个变量(定义一个成员变量),关联到IDC_EDIT1中(要在实现中关联,源文件文件夹中)CString str2;//接收button2,和IDC_EDIT2绑定 p…...

Linux搜索查找类指令

1、find指令 基本语法:find [搜索范围] [选项] 功能:将从指定目录向下递归地遍历其各个子目录,将满足条件的文件或目录显示在终端。 常用选项: 操作 命令示例 说明 查找指定路径下的所有文件 find /path/to/dir 查找指定目…...

江协科技/江科大-51单片机入门教程——P[1-1] 课程简介P[1-2] 开发工具介绍及软件安装

本教程也力求在玩好单片机的同时了解一些计算机的基本概念,了解电脑的一些基本操作,了解电路及其元器件的基本理论,为我们学习更高级的单片机,入门IT和信息技术行业,打下一定的基础。 目录 1.课程简介 2.开发工具及…...

监听load和hashchange事件

监听load和hashchange事件 上篇文章中,我们已经将菜谱的数据给拿到,并且已经可以渲染到页面上,本篇我们将为程序添加一些事件; 注:本项目来自于Jonas Schmedtmann创建,文章仅仅作为学习作用! 菜…...

深度剖析Seata源码:解锁分布式事务处理的核心逻辑

文章目录 写在文章开头如何使用源码(配置转掉)基于AT模式详解Seata全链路流程Seata服务端启动本地服务如何基于GlobalTransaction注解开启事务客户端如何开启分布式事务RM和TC如何协调处理分支事务RM生成回滚日志事务全局提交与回滚小结参考写在文章开头 在当今分布式系统日益…...

在 Ansys Mechanical 中解决干涉拟合

有意和无意的过盈配合在工程设计和有限元分析 (FEA) 中很常见。当两个组件重叠或接触时,就会发生这种情况,从而产生应力和变形,必须仔细分析以确保功能正常。有意干涉,例如轴和轴承之间的压配合或用于固定金…...

JMeter性能问题

性能测试中TPS上不去的几种原因 性能测试中TPS上不去的几种原因_tps一直上不去-CSDN博客 网络带宽 连接池 垃圾回收机制 压测脚本 通信连接机制 数据库配置 硬件资源 压测机 业务逻辑 系统架构 CPU过高什么原因 性能问题分析-CPU偏高 - 西瓜汁拌面 - 博客园 US C…...

美国国防部(DoD)SysML v2迁移指南项目

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 分享一篇SysML v1向SysML v2迁移的资料。 下载地址:https://ndia.dtic.mil/wp-content/uploads/2023/systems/Thurs_1560710_Stirk.pdf 核心内容用DeepSeek整理如下&#…...

JavaWeb-GenericServlet源码分析(适配器/模板方法)

文章目录 类直接实现Servlet接口的弊端Servlet接口的方法适配器设计模式 适配器对象的改造关于init方法的ServletConfig对象来源使用模板方法设计模式改造init方法 GenericServlet内置抽象类ServletConfig接口ServletConfig接口简介测试再谈GenericServlet抽象类 类直接实现Ser…...

微机原理与汇编语言试题四

一、单项选择 1.(单选题)()指向的内存单元的值被CPU做为指令执行。 A. DS:SI B. CS:IP C. SS:SP D. ES:DI 正确答案:B 2.(单选题)当RESET信号进入高电平状态时,将使8086的()寄存器初始化为0FFFFH A. SS B. DS C. ES D. CS 正确答案:D 3.(单选题)堆栈段寄存器是( …...

[java基础-JVM篇]1_JVM自动内存管理

JVM内存管理涉及但不限于类加载、对象分配、垃圾回收等,本篇主要记录运行时数据区域与对象相关内容。 内容主要来源《深入理解Java虚拟机:JVM高级特性与最佳实践》与官方文档,理解与表述错漏之处恳请各位大佬指正。 目录 运行时数据区域 栈 栈…...

安宝特科技 | Vuzix Z100智能眼镜+AugmentOS:重新定义AI可穿戴设备的未来——从操作系统到硬件生态,如何掀起无感智能革命?

一、AugmentOS:AI可穿戴的“操作系统革命” 2025年2月3日,Vuzix与AI人机交互团队Mentra联合推出的AugmentOS,被业内视为智能眼镜领域的“iOS时刻”。这款全球首个专为智能眼镜设计的通用操作系统,通过三大突破重新定义了AI可穿戴…...

Unity FBXExport导出的FBX无法在Blender打开

将FBX转换为obj: Convert 3D models online - free and secure...

UE5销毁Actor,移动Actor,简单的空气墙的制作

1.销毁Actor 1.Actor中存在Destory()函数和Destoryed()函数 Destory()函数是成员函数,它会立即标记 Actor 为销毁状态,并且会从场景中移除该 Actor。它会触发生命周期中的销毁过程,调用 Destroy() 后,Actor 立即进入销毁过程。具体…...

【python】提取word\pdf格式内容到txt文件

一、使用pdfminer提取 import os import re from pdfminer.high_level import extract_text import docx2txt import jiebadef read_pdf(file_path):"""读取 PDF 文件内容:param file_path: PDF 文件路径:return: 文件内容文本"""try:text ext…...

Java 语言特性(面试系列2)

一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法

树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验

系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

【C++从零实现Json-Rpc框架】第六弹 —— 服务端模块划分

一、项目背景回顾 前五弹完成了Json-Rpc协议解析、请求处理、客户端调用等基础模块搭建。 本弹重点聚焦于服务端的模块划分与架构设计,提升代码结构的可维护性与扩展性。 二、服务端模块设计目标 高内聚低耦合:各模块职责清晰,便于独立开发…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...

R语言速释制剂QBD解决方案之三

本文是《Quality by Design for ANDAs: An Example for Immediate-Release Dosage Forms》第一个处方的R语言解决方案。 第一个处方研究评估原料药粒径分布、MCC/Lactose比例、崩解剂用量对制剂CQAs的影响。 第二处方研究用于理解颗粒外加硬脂酸镁和滑石粉对片剂质量和可生产…...