当前位置: 首页 > news >正文

C++---了解STL

上节学习了模板,那么就得谈到C++的标准模板库STL。

C++98:以模板方式重写了C++标准库,引入了STL(标准模板库)。

1.概念

STL(Standard template Libarary)标准模板库:是C++标准库的重要组成部分,不仅是一个可复用的组件库,而且是保罗数据结构和算法的软件框架。

2.版本

原始版本

Alexander Stepanov、Meng Lee 在惠普实验室(HP)完成的原始版本,本着开源精神,他们声明允许任何人任意运用、拷贝、修改、传播、商业使用这些代码,无需付费。唯一的条件就是也需要向原始版本一样做开源使用。HP版本--所有STL实现版本的始祖。

P.J.版本

由P. J. Plauger开发,继承自HP版本,被Windows Visual C++采用,不能公开或修改,缺陷:可读性比较低,符号命名比较怪异。

RW版本

Rouge Wage公司开发,继承自HP版本,被C+ + Builder 采用,不能公开或修改,可读性一般。

SGI版本

由Silicon Graphics Computer SystemsInc公司开发,继承自HP版 本。GCC(Linux)采用,可移植性好,可公开、修改甚至贩卖,从命名风格和编程 风格上看,阅读性非常高。后面学习STL要阅读部分源代码,主要参考的就是这个版本。

STL提供的容器和算法是规定死的,虽然有不同的版本,但是功能一致且内部框架类似。

类似于汽车的不同品牌。

3.六大组件

4.学习方法 

使用、理解、扩展。

能够熟练运用STL标准模板库,理解STL的底层逻辑并且能够去模拟实现;

在使用与理解的基础上,对于一些没有在库中的数据结构进行扩展。

5.缺陷 

①STL库的更新慢。这个得严重吐槽,上一版靠谱是C++98,中间的C++03基本一些修订。C++11出来已经相隔了13年,STL才进一步更新。

②STL现在都没有支持线程安全。并发环境下需要我们自己加锁。且锁的粒度是比较大的。

③STL极度的追求效率,导致内部比较复杂。比如类型萃取,迭代器萃取。

④STL的使用会有代码膨胀的问题,比如使用vector/vector/vector这样会生成多份代码,当然这是模板语法本身导致的。

相关文章:

C++---了解STL

上节学习了模板,那么就得谈到C的标准模板库STL。 C98:以模板方式重写了C标准库,引入了STL(标准模板库)。 1.概念 STL(Standard template Libarary)标准模板库:是C标准库的重要组成部分,不仅是一个可复用的组件库&am…...

智能自动化新纪元:AI与UiPath RPA的协同应用场景与技术实践

智能自动化新纪元:AI与UiPath RPA的协同应用场景与技术实践 引言 在数字化转型的浪潮中,企业对于自动化技术的需求已从简单的任务执行转向更复杂的智能决策。传统RPA(Robotic Process Automation)通过模拟人类操作处理重复性任务…...

2025年2月科技热点深度解析:AI竞赛、量子突破与开源革命

引言 2025年的科技领域持续呈现爆发式增长,AI大模型竞争白热化、量子计算商业化加速、开源工具生态繁荣成为本月最受关注的议题。本文结合最新行业动态,从技术突破、商业布局到开发者生态,全面解析当前科技热点,为读者提供深度洞…...

计算机网络————(三)

前文二 前文一 Websocket协议 是一种存在TCP协议之上的协议 当客户端需要了解服务器是否更新就需要不断给客户端发送请求询问是否更新,这行会造成服务端压力很大 而Websocket相当于服务器一旦更新了就会给客户端发送消息表明自己更新了,类似客户端订阅…...

请谈谈 React 中的状态管理,如何使用 Context API 和 Redux 进行状态管理?

一、Context API 深度应用 1. 核心实现原理 通过createContext创建上下文对象,使用Provider组件包裹需要共享状态的组件树,子组件通过useContext Hook或Consumer组件消费数据。 代码示例(主题切换场景): // 创建上…...

【考研】复试相关上机题目

文章目录 22机试回忆版1、判断燃气费描述输入格式输出格式输入样例输出样例 C o d e Code Code 2、统计闰年数量描述输入格式输出格式输入样例输出样例 C o d e Code Code 3、打印图形描述输入格式输出格式 C o d e Code Code 4、密文数据描述输入格式输出格式输入样例输出样例…...

利用机器学习实现实时交易欺诈检测

以下是一个基于Python的银行反欺诈AI应用示例代码,演示如何利用机器学习实现实时交易欺诈检测。该示例使用LightGBM算法训练模型,并通过Flask框架构建实时检测API: python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preproc…...

Modelfile配置说明

参数说明翻译 参数描述值类型示例用法mirostat启用Mirostat采样以控制困惑度。(默认:0,0禁用,1Mirostat,2Mirostat 2.0)intmirostat 0mirostat_eta影响算法对生成文本反馈的响应速度。较低的学习率将导致调…...

labview实现有符号位16进制转二进制补码转真值

今天在用一个采集模块时,发现读出寄存器的数据是不同的,它有两种范围,一个时十六进制整型,一种是有符号位十六进制,对应的量程和范围也是不同的,针对之前读取温度没有出现负数的情况,应该是转成…...

浏览器深度解析:打造极速、安全、个性化的上网新体验

在数字化时代,浏览器作为我们获取信息、娱乐休闲的重要工具,其性能与功能直接影响着我们的上网体验。今天,我将为大家介绍一款备受好评的浏览器——Yandex浏览器,并深入解析其独特功能与优势,帮助大家更好地了解并选择这款上网神器。 一、知名公司背书,开源项目融合 Yan…...

JavaScript 简单类型与复杂类型-堆和栈

深入理解JavaScript中的简单类型(基本数据类型)与复杂类型(引用数据类型)如何在内存中存储对于编写高效、无误的代码至关重要。本文将探讨这两种类型的差异,以及它们在内存中的存储机制——栈(Stack&#x…...

【AI+智造】DeepSeek价值重构:当采购与物控遇上数字化转型的化学反应

作者:Odoo技术开发/资深信息化负责人 日期:2025年2月24日 引言:从事企业信息化工作16年,我见证过无数企业从手工台账到ERP系统的跨越。但真正让采购和物控部门脱胎换骨的,是融合了Deepseek AI的Odoo数字化解决方案——…...

基于YOLO11深度学习的苹果叶片病害检测识别系统【python源码+Pyqt5界面+数据集+训练代码】

《------往期经典推荐------》 一、AI应用软件开发实战专栏【链接】 项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体检测系统开发】5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】7.【…...

mapbox添加自定义图片绑定点击事件,弹窗为自定义组件

一、首先构建根据后端返回的数据构建geojson格式的数据,点位的geojson数据格式: {"type": "FeatureCollection","features": [{"type": "Feature","geometry": {"type": "…...

SVT-AV1接入ffmpeg说明

一 编译集成 Files v2.3.0 Alliance for Open Media / SVT-AV1 GitLab cd /SVT-AV1/Build/linux/ ./build.sh make install GitHub - FFmpeg/FFmpeg: Mirror of https://git.ffmpeg.org/ffmpeg.git ./configure --enable-libsvtav1 --enable-gpl --extra-ldflags-L/usr/loca…...

基于 C++ Qt 的 Fluent Design 组件库 QFluentWidgets

简介 QFluentWidgets 是一个基于 Qt 的 Fluent Designer 组件库,内置超过 150 个开箱即用的 Fluent Designer 组件,支持亮暗主题无缝切换和自定义主题色。 编译示例 以 Qt5 为例(Qt6 也支持),将 libQFluentWidgets.d…...

OpenCV(6):图像边缘检测

图像边缘检测是计算机视觉和图像处理中的一项基本任务,它用于识别图像中亮度变化明显的区域,这些区域通常对应于物体的边界。是 OpenCV 中常用的边缘检测函数及其说明: 函数算法说明适用场景cv2.Canny()Canny 边缘检测多阶段算法,检测效果较…...

多模态人物视频驱动技术回顾与业务应用

一种新的商品表现形态,内容几乎存在于手淘用户动线全流程,例如信息流种草内容、搜索消费决策内容、详情页种草内容等。通过低成本、高时效的AIGC内容生成能力,能够从供给端缓解内容生产成本高的问题,通过源源不断的低成本供给倒推…...

星海智算+ DeepSeek-R1:技术突破与行业应用的协同革新

一、前言 在当今数字化时代,人工智能(AI)正以前所未有的速度改变着商业和社会的方方面面。最近爆火的DeepSeek-R1系列模型,以其强大的推理能力和在中文的推理、代码和数学任务高效的性能得到了全球用户的热议。该模型不仅在多项专…...

选择排序:简单高效的选择

大家好,今天我们来聊聊选择排序(Selection Sort)算法。这是一个非常简单的排序算法,适合用来学习排序的基本思路和操作。选择排序在许多排序算法中以其直观和易于实现的特点著称,虽然它的效率不如其他高效算法&#xf…...

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以?

Golang 面试经典题:map 的 key 可以是什么类型?哪些不可以? 在 Golang 的面试中,map 类型的使用是一个常见的考点,其中对 key 类型的合法性 是一道常被提及的基础却很容易被忽视的问题。本文将带你深入理解 Golang 中…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module

1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统&#xff0c;支持多语言对话&#xff08;如 中文&#xff0c;英文&#xff0c;日语&#xff09;&#xff0c;语音情感&#xff08;如 开心&#xff0c;悲伤&#xff09;&#x…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

WPF八大法则:告别模态窗口卡顿

⚙️ 核心问题&#xff1a;阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程&#xff0c;导致后续逻辑无法执行&#xff1a; var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题&#xff1a…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...