2024年国赛高教杯数学建模D题反潜航空深弹命中概率问题解题全过程文档及程序
2024年国赛高教杯数学建模
D题 反潜航空深弹命中概率问题
原题再现
应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或浅海等海底地形较为复杂的海域,由于价格低、抗干扰能力强,仍有一些国家在研究和发展深水炸弹反潜技术。 反潜飞机攻击水下目标前,先由侦察飞机通过电子侦察设备发现水下潜艇目标的大致位置,然后召唤反潜飞机前来进行攻击。当潜艇发现被侦察飞机电子设备跟踪时,通常会立即关闭电子设备及发动机,采取静默方式就地隐蔽。
本问题采用目标坐标系:潜艇中心位置的定位值在海平面上的投影为原点 𝑂,正东方向为 𝑋 轴正向,正南方向为 𝑌 轴正向,垂直于海平面向下方向为 𝑍 轴正向。正北方向顺时针旋转到潜艇航向的方位角记为 𝛽,假定在一定条件下反潜攻击方可获知该航向(见图1)。
由于存在定位误差,潜艇中心实际位置的3个坐标是相互独立的随机变量,其中 𝑋,𝑌均服从正态分布 𝑁(0,𝜎2),𝑍 服从单边截尾正态分布 𝑁(ℎ0,𝜎𝑧2,𝑙),其密度函数为
这里 ℎ0 是潜艇中心位置深度的定位值,𝑙 是潜艇中心位置实际深度的最小值,𝜙 和 𝛷 分别是标准正态分布的密度函数与分布函数。 将潜艇主体部分简化为长方体,深弹在水中垂直下降。假定深弹采用双引信(触发引信+定深引信)引爆,定深引信事先设定引爆深度,深弹在海水中的最大杀伤距离称为杀伤半径。深弹满足以下情形之一,视为命中潜艇:
(1) 航空深弹落点在目标平面尺度范围内,且引爆深度位于潜艇上表面的下方,由触发引信引爆;
(2) 航空深弹落点在目标平面尺度范围内,且引爆深度位于潜艇上表面的上方,同时潜艇在深弹的杀伤范围内,由定深引信引爆;
(3) 航空深弹落点在目标平面尺度范围外,则到达引爆深度时,由定深引信引爆,且此时潜艇在深弹的杀伤范围内。
请建立数学模型,解决以下问题:
问题1 投射一枚深弹,潜艇中心位置的深度定位没有误差,两个水平坐标定位均服从正态分布。分析投弹最大命中概率与投弹落点平面坐标及定深引信引爆深度之间的关系,并给出使得投弹命中概率最大的投弹方案,及相应的最大命中概率表达式。 针对以下参数值给出最大命中概率:潜艇长100 m,宽20 m,高25 m,潜艇航向方位角为 90∘,深弹杀伤半径为20 m,潜艇中心位置的水平定位标准差 𝜎=120 m,潜艇中心位置的深度定位值为150 m.
问题2 仍投射一枚深弹,潜艇中心位置各方向的定位均有误差。请给出投弹命中概率的表达式。 针对以下参数,设计定深引信引爆深度,使得投弹命中概率最大:潜艇中心位置的深度定位值为150 m,标准差 𝜎𝑧=40 m,潜艇中心位置实际深度的最小值为 120 m,其他参数同问题1。
问题3 由于单枚深弹命中率较低,为了增强杀伤效果,通常需要投掷多枚深弹。若一架反潜飞机可携带9枚航空深弹,所有深弹的定深引信引爆深度均相同,投弹落点在平面上呈阵列形状(见图2)。在问题2的参数下,请设计投弹方案(包括定深引信引爆深度,以及投弹落点之间的平面间隔),使得投弹命中(指至少一枚深弹命中潜艇)的概率最大。
整体求解过程概述(摘要)
随着潜艇技术的不断发展,反潜作战面临着日益严峻的挑战。深弹作为重要的反潜武器,其投放策略的优化对于提高反潜作战效率至关重要。本文旨在通过数学建模和数值分析,找出在不同条件下深弹投放的最大命中概率策略。
潜艇深度已知的单深弹投放模型,在潜艇深度位置信息确定的情况下,本文首先在二维平面上建立了深弹的毁伤概率模型。该模型考虑了深弹爆炸的威力范围、潜艇的尺寸以及投放角度等因素,将问题转化为炸弹最大毁伤区域的构建与最优概率积分问题。根据深弹爆炸深度与潜艇深度的位置关系,本文详细分析了五种可能的投放情况,包括深弹在潜艇上方、下方、侧面以及直接命中等。通过动态讨论,确定了当深弹的落点位于潜艇的上表面和下表面之间时,投弹可达最大投弹概率。
潜艇深度未知的单深弹投放模型,考虑到实际作战中潜艇深度往往未知,本文在原有模型基础上增加了深度参数,并假设其服从单边截尾正态分布。这使得模型更加贴近实际,也增加了问题的复杂性。为了处理深度不确定性,本文建立了三维立体的命中概率模型。通过数值分析和简化处理,将三维模型分解为二维命中概率模型与一维深度概率模型的最大化积分问题。在二维命中概率模型的基础上,本文利用数值积分方法求解了潜艇深度定位在最大可能区间的命中概率,为实际作战中的深弹投放提供了决策支持。
潜艇深度未知的多深弹投放模型,首先通过数学分析确定了深弹的最佳爆炸深度,以确保在给定深度范围内达到最大的毁伤效果。接着,本文将最大命中概率的决定因素分解为深弹二维毁伤区域与潜艇的平面分布概率两部分。通过综合考虑深弹的投放位置、爆炸范围以及潜艇的可能位置,构建了多深弹投放的命中概率优化模型。利用数学解析和数值解析与网格算法相结合的方法,本文求解了多深弹投放模型下的最大命中概率。当深弹间距d=150时,命中概率达到最大值0.333。这一结果对于指导实际作战中的多深弹投放具有重要意义。
模型假设:
1.潜艇以及深弹默认为单一质点;
2.假设深弹之间不会互相影响;
3.假设潜艇时刻处在动态移动中。
问题分析:
首先,我们分析了深弹引爆深度与命中概率之间的内在联系。在概率密度函数已知且非负的前提下,求解最大投射命中概率被转化为求解最大积分区域的问题。通过数学推导,我们证明了只有当引爆深度位于潜艇上下表面之间时,积分区域才能达到最大,进而确定了固定投弹点处的命中概率。接着,我们考虑了引爆深度变化时积分区域虽然大小相同但命中概率差异显著的情况。通过将该问题转化为二维正态分布函数的最值求解问题,我们得到了最大命中概率的表达式。在已知潜艇长宽高等参数(深度定位参数无误差)且深弹杀伤半径为20m的条件下,我们计算出了最大的命中概率。
在潜艇深度未知的情况下,我们引入了深度定位误差,并假设其服从单边截尾正态分布。为了简化问题,我们将问题转化为在潜艇最有可能出现的深度范围内选择最佳投弹深度的问题。基于问题一的研究成果,我们已知潜艇深度一定时的最佳投弹深度和投弹点。因此,在已知潜艇中心位置深度的定位误差服从的分布参数后,我们以潜艇的高度为度量区间,找出了该区间内最有可能出现的深度范围,并取其中点作为深弹的定深引信引爆深度。这样的选择使得投弹命中概率达到最大。
在问题二的基础上,我们进一步考虑了多深弹的投放布局问题。给定深弹的定深引信引爆深度,我们根据潜艇深度参数服从的单边截尾正态分布,计算了潜艇中心落在不同区域内的概率。通过参数调整,我们计算了每个区域内9枚航空深弹至少一次命中潜艇的概率。然后,将这两组概率对应相乘并求和,得出了命中概率的数学期望。最后,通过数值优化方法,我们找出了使命中概率数学期望最大的投弹方案,即最佳投弹布局。
模型的建立与求解整体论文缩略图
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可
部分程序代码(完整论文以及代码请联系博主):
sigma = 120; % 标准差,单位:米
L = 100; % 潜艇长度,单位:米
R = 20; % 杀伤半径,单位:米
W = 20; % 潜艇宽度,单位:米% 定义被积函数
f = @(x, y) exp(-(x.^2 + y.^2) / (2 * sigma^2));% 计算第一个积分项(左侧部分)
I1 = integral2(f, -R-L/2, -L/2, @(x)-W/2-sqrt(R^2 - (x + L/2).^2), @(x)W/2+sqrt(R^2 - (x + L/2).^2));% 计算第二个积分项(中间部分)
I2 = integral2(f, -L/2, L/2, -W/2-R, W/2+R);% 计算第三个积分项(右侧部分)
I3 = integral2(f, L/2, R+L/2, @(x)-W/2-sqrt(R^2 - (x - L/2).^2), @(x)W/2+sqrt(R^2 - (x - L/2).^2));% 计算总积分
p00 = (1 / (2 * pi * sigma^2)) * (I1 + I2 + I3);% 显示结果
disp(['The probability p(0,0) is: ', num2str(p00)]);
function [d,I]=x2
sigma = 120; % 标准差
L = 100; % 潜艇长度
R = 20; % 杀伤半径
W = 20; % 潜艇宽度
H = 25; % 高度
sigma_z = 40; % Z 的标准差
l1 = 120;
h0 = 150;f = @(x, y) (1 / (2 * pi * sigma^2)) * exp(-(x.^2 + y.^2) / (2 * sigma^2));
Phi = @(x) normcdf(x, 0, 1);
dm=1/(1 - Phi((l1 - h0) / sigma_z));
% 定义函数 g(z)
g_z = @(z) (1/sigma_z)*dm * (1 / sqrt(2 * pi)) * exp(-((z - h0).^2) / (2 * sigma_z^2));
%test=integral(@(z) g_z(z),120,200);
fun = @(x,y,z) f(x,y).*g_z(z);d = 152.5:1:180;I1 = arrayfun(@(d) integral3(@(x, y, z) f(x, y) .* g_z(z), -L/2, L/2, -W/2, W/2, l1, d-R-H/2), d);
I2=[];
I3=[];
I4=[];
I5=arrayfun(@(d) integral(@(z) g_z(z), d-H/2,d+H/2), d);
I5=0.083734*I5;
I6=[];
I7=[];
I8=[];for i=1:length(d)dx=0.5;dy=0.5;dz=0.5;%%%以下计算 I2% 初始化黎曼和sum=0;% 计算黎曼和zmin = d(i) - R - 0.5 * H;zmax = d(i) - 0.5 * H;xmin = @(z) -L/2-sqrt(R^2 - (d(i) - z - H/2).^2);xmax = @(z) -L/2;ymin = @(x,z) -W/2-sqrt(R^2 - (d(i) - z - H/2).^2-(x+L/2).^2);ymax = @(x,z) W/2+sqrt(R^2 - (d(i) - z - H/2).^2-(x+L/2).^2);for z = zmin:dz:zmaxx1=xmin(z);xu=xmax(z);for x =x1:dx:xuy1=ymin(x,z);yu=ymax(x,z);for y = y1:dy:yusum = sum + fun(x,y,z) * dx * dy * dz;endendendI2=[I2 sum];
end%%%以下计算 I3
% 初始化黎曼和
sum=0;
% 计算黎曼和
zmin = d(i) - R - 0.5 * H;
zmax = d(i) - 0.5 * H;
xmin = -0.5*L;
xmax = 0.5*L;
ymin = @(z) -W/2-sqrt(R^2 - (d(i) - z - H/2).^2);
ymax = @(z) W/2+sqrt(R^2 - (d(i) - z - H/2).^2);
sum = 0;
for z = zmin:dz:zmaxxl=xmin;xu=xmax(z);
for x =x1:dx:xuyl=ymin(z);yu=ymax(z);for y = y1:dy:yusum = sum + fun(x,y,z) * dx * dy * dz;end
end
end
I3=[I3 sum];%%%以下计算 I4
% 初始化黎曼和
sum=0;
% 计算黎曼和
zmin = d(i) - R - 0.5 * H;
zmax = d(i) - 0.5 * H;
xmin = @(z) L/2;
xmax = @(z) L/2+sqrt(R^2 - (d(i) - z - H/2).^2);
ymin = @(x,z) -W/2-sqrt(R^2 - (d(i) - z - H/2).^2-(x-L/2).^2);
ymax = @(x,z) W/2+sqrt(R^2 - (d(i) - z - H/2).^2-(x-L/2).^2);
sum = 0;
for z = zmin:dz:zmaxxl=xmin(z);xu=xmax(z);for x =x1:dx:xuyl=ymin(x,z);yu=ymax(x,z);for y = y1:dy:yusum = sum + fun(x,y,z) * dx * dy * dz;endend
end
I4=[I4 sum];%%%以下计算 I6
% 初始化黎曼和
sum=0;
% 计算黎曼和
zmin = d(i) + 0.5 * H;
zmax = d(i) +R+ 0.5 * H;
xmin = @(z) -L/2-sqrt(R^2 - (d(i) - z + H/2).^2);
xmax = @(z) -L/2;
ymin = @(x,z) -W/2-sqrt(R^2 - (d(i) - z + H/2).^2-(x+L/2).^2);
ymax = @(x,z) W/2+sqrt(R^2 - (d(i) - z + H/2).^2-(x+L/2).^2);
for z = zmin:dz:zmaxxl=xmin(z);xu=xmax(z);for x =x1:dx:xuyl=ymin(x,z);yu=ymax(x,z);for y = y1:dy:yusum = sum + fun(x,y,z) * dx * dy * dz;endend
end
1. import numpy as np2. from scipy.stats import truncnorm3. from scipy.integrate import quad4. import pandas as pd5. import matplotlib.pyplot as plt6. import matplotlib
13. h0 =200
14. sigma_z =50
15. l= 150
18. def truncated_normal_density(z):19. a, b= (l-h0) /sigma_z, float('inf') 20. scale = sigma_z21. loc =h022. return truncnorm.pdf(z, a,b, loc=loc, scale=scale)
25. def calculate_integral(z0):26. lower_bound =z0-1027. upper_bound =z0+1028. result, _= quad(truncated_normal_density, lower_bound, upper_bound)29. return result
32. def main():33. z0_values = np.arange(100,200, 0.0001)34. integral_values =[calculate_integral(z0) for z0 in z0_values]37. df =pd.DataFrame({38. 'z0 (meters)': z0_values,39. 'Integral Value':integral_values40. })41. df.to_excel('result.xlsx',index=False)
44. plt.figure(figsize=(30, 20))45. plt.plot(z0_values, integral_values, marker='o', linestyle='*',color='y')46. plt.xlabel()47. plt.ylabel()49. plt.grid(True)50. plt.savefig('2.jpg')51. plt.show()53. if __name__ == "__main__":54. main()
全部论文及程序请见下方“ 只会建模 QQ名片” 点击QQ名片即可
相关文章:

2024年国赛高教杯数学建模D题反潜航空深弹命中概率问题解题全过程文档及程序
2024年国赛高教杯数学建模 D题 反潜航空深弹命中概率问题 原题再现 应用深水炸弹(简称深弹)反潜,曾是二战时期反潜的重要手段,而随着现代军事技术的发展,鱼雷已成为现代反潜作战的主要武器。但是,在海峡或…...
什么是数字人
什么是数字人 Ultralight-Digital-Human 是一个能在移动设备上实时运行的数字人模型仓库,可能是第一个开源的如此轻量级的数字人模型。 主要特点 轻量级:能够在移动设备上实时运行。开源:代码和模型公开,方便开发者使用和改进。文件结构 根目录: README.md:项目的说明文…...
15.5 基于 RetrievalQA 的销售话术增强系统实战:构建智能销售大脑
基于 RetrievalQA 的销售话术增强系统实战:构建智能销售大脑 关键词:RetrievalQA 应用实战、销售知识增强、语义检索优化、上下文感知问答、多源知识融合 1. RetrievalQA 技术原理与销售场景适配 1.1 RetrievalQA 核心工作机制 #mermaid-svg-VL2yIusgl4oprXUr {font-family…...
软件供应链安全工具链研究系列—RASP自适应威胁免疫平台(下篇)
在“软件供应链安全工具链研究系列—RASP自适应威胁免疫平台-上篇”中我们提到了RASP工具的基本能力、原理以及工具的应用场景,了解到了RASP工具在各场景下发挥的价值。那么在当今高强度攻防对抗的大场景下,RASP作为最后一道防线,不论是从高危…...
WordPress网站502错误全面排查与解决指南
502 Bad Gateway错误是WordPress站长最常遇到的服务器问题之一,它意味着服务器作为网关或代理时,未能从上游服务器获取有效响应。针对WP可能出现的502问题,本文提供一些基础到进阶的解决方案供大家参考:) 一、502错误的本质和核心诱因 502错误属于HTTP状态码中的5xx系列,…...
PCL源码分析:曲面法向量采样
文章目录 一、简介二、源码分析三、实现效果参考资料一、简介 曲面法向量点云采样,整个过程如下所述: 1、空间划分:使用递归方法将点云划分为更小的区域, 每次划分选择一个维度(X、Y 或 Z),将点云分为两部分,直到划分区域内的点少于我们指定的数量,开始进行区域随机采…...

HTTP 动态报错码的原因和解决方法
目录 1xx(信息性状态码) 2xx(成功状态码) 3xx(重定向状态码) 4xx(客户端错误状态码) 5xx(服务器错误状态码) 参考文章 以下是 HTTP 动态报错码的常见原…...

1分钟用DeepSeek编写一个PDF转Word软件
一、引言 如今,在线工具的普及让PDF转Word成为了一个常见需求,常见的pdf转word工具有收费的wps,免费的有pdfgear,见下文: PDFgear:一款免费的PDF编辑、格式转化软件-CSDN博客 还有网上在线的免费pdf转word工具smallp…...
生成对抗网络(GAN)
生成对抗网络(GAN):生成对抗网络是一种深度学习模型,由 Ian Goodfellow 等人在 2014 年提出。GAN由生成器和判别器组成,生成器生成假数据,判别器区分真假数据。两者通过对抗训练不断提升,最终生成器能够生成…...
openlayers结合turf geojson面获取面积和中心点
在 OpenLayers 中绘制 GeoJSON 面要素并计算面积和中心点,可以结合 OpenLayers 的 ol/format/GeoJSON 模块将 GeoJSON 数据转换为 OpenLayers 的 Feature,然后使用 Turf.js 进行计算。示例代码如下 import Map from ol/Map; import View from ol/View; …...

【SRC实战】修改金币数量实现财富自由
01 — 漏洞证明 1、进入阅读奖励 2、此时金币数量0 3、来到新手福利处 4、观看广告获取奖励 5、由于int整型范围-2147483648~2147483647,避免溢出,此处修改请求包中coinNum参数为2147483640 6、返回查看金币数量变为2147483640 02 — 漏洞…...

地理数据可视化:飞线说明(笔记)
//主要代码 //黄色飞线s_data.push({type: lines,zlevel: 2,effect: {//线上的箭头效果show: true,period: 1.5,//控制点的流动速度,数越小流动的速度越快trailLength: 0.1,//动画的拖尾时长// color: #2ef358,color: #ffeb40,symbol: planePath,//控…...

2024最新版鸿蒙纯血原生应用开发教程文档丨学习ArkTS语言-基本语法
ArkTS是HarmonyOS的主要应用开发语言,在TypeScript基础上进行了扩展,保留了其基本风格,并通过增强静态检查和分析来提高程序的稳定性和性能。本教程将帮助开发者掌握ArkTS的核心功能、语法及最佳实践,以便高效地构建高性能移动应用…...

微信小程序-二维码绘制
wxml <view bindlongtap"saveQrcode"><!-- 二维码 --><view style"position: absolute;background-color: #FFFAEC;width: 100%;height: 100vh;"><canvas canvas-id"myQrcode" style"width: 200px; height: 200px;ba…...

轻量化网络设计|ShuffleNet:深度学习中的轻量化革命
一、引言 在深度学习中,卷积神经网络(Convolutional Neural Networks,CNN)无疑是大家最耳熟能详的算法之一。自诞生以来,CNN 在图像分类、目标检测、语义分割等众多计算机视觉任务中取得了令人瞩目的成就,…...

一天记20个忘10个之五:land
一天记20个忘10个之五:land land n.陆地,土地 v.着陆,降落 // la-拉、宽广 nd后缀 字面义:宽广的土地 陆地 landing n.着陆,降落lander n.登陆车,着陆者 派生: island岛,岛屿 //isle(n.用于…...
Python 类(创建和使用类)
面向对象编程 是最有效的软件编写方法之一。在面向对象编程中,你编写表示现实世界中的事物和情景的类,并基于这些类来创建对象。编写类时,你定义一大类对 象都有的通用行为。基于类创建对象 时,每个对象都自动具备这种通用行为&am…...

LeetCode 解题思路 3(Hot 100)
解题思路: 初始化指针: 左指针指向数组起始位置,右指针指向数组末尾。计算当前面积: 左右指针相遇前所围成的矩形面积。更新最大面积: 比较当前面积与已知最大面积。移动指针: 移动较高指针无法获得更…...
算法-二叉树篇11-左叶子之和
左叶子之和 力扣题目链接 题目描述 给定二叉树的根节点 root ,返回所有左叶子之和。 解题思路 层次遍历的时候,保留每层第一个节点并相加即可。 题解 class Solution { public:int sumOfLeftLeaves(TreeNode* root) {if(root NULL){return 0;}re…...

MaxKB上架至阿里云轻量应用服务器镜像市场
近日,MaxKB开源知识库问答系统已上架至阿里云轻量应用服务器镜像市场,目前是阿里云此类镜像市场中唯一推荐的AI应用镜像。 ▲图1 MaxKB已经上架至阿里云轻量应用服务器镜像市场 MaxKB是飞致云旗下开源项目,是一款基于大语言模型和RAG&…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
测试markdown--肇兴
day1: 1、去程:7:04 --11:32高铁 高铁右转上售票大厅2楼,穿过候车厅下一楼,上大巴车 ¥10/人 **2、到达:**12点多到达寨子,买门票,美团/抖音:¥78人 3、中饭&a…...
ffmpeg(四):滤镜命令
FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...
【论文笔记】若干矿井粉尘检测算法概述
总的来说,传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度,通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Typeerror: cannot read properties of undefined (reading ‘XXX‘)
最近需要在离线机器上运行软件,所以得把软件用docker打包起来,大部分功能都没问题,出了一个奇怪的事情。同样的代码,在本机上用vscode可以运行起来,但是打包之后在docker里出现了问题。使用的是dialog组件,…...

基于TurtleBot3在Gazebo地图实现机器人远程控制
1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

【Linux系统】Linux环境变量:系统配置的隐形指挥官
。# Linux系列 文章目录 前言一、环境变量的概念二、常见的环境变量三、环境变量特点及其相关指令3.1 环境变量的全局性3.2、环境变量的生命周期 四、环境变量的组织方式五、C语言对环境变量的操作5.1 设置环境变量:setenv5.2 删除环境变量:unsetenv5.3 遍历所有环境…...

HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...