当前位置: 首页 > news >正文

C语言【指针篇】(三)

C语言【指针篇】(三)

    • 前言
    • 正文
      • 1. 数组名的理解
      • 2. 使用指针访问数组
      • 3. 一维数组传参的本质
      • 4. 冒泡排序
      • 5. 二级指针
      • 6. 指针数组
      • 7. 指针数组模拟二维数组
    • 总结

前言

本文主要基于前面对指针的掌握,进一步学习:数组名的理解、使用指针访问数组、一维数组传参的本质、冒泡排序、二级指针、指针数组以及指针数组模拟二维数组。

正文

1. 数组名的理解

我们可能遇到过这样的代码

int arr[10] = {1,2,3,4,5,6,7,8,9,10};
int *p = &arr[0];

在这里&arr[0]表示取到第一个元素的首地址,而arr本身就是地址,地址与首元素的地址一样,如下代码可做验证:

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("&arr[0] = %p\n", &arr[0]);printf("arr = %p\n" , arr);return 0;
}

结果
运行结果果然一致
结论:数组名和数组首元素的地址打印出的结果一模一样,即数组名就是数组首元素 的地址。
但是,有人又有这样的疑问:既然一样,它们所占字节是否也是相等的?如下代码

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("%zd\n", sizeof(arr));printf("%zd\n", sizeof(arr[0]));return 0;
}

结果
显然不同,若arr是数组首元素的地址,输出应该是4或8(取决于系统中指针的大小)。
其实数组名是数组首元素的地址这一说法是正确的
但存在两个例外
sizeof(数组名),sizeof中单独放数组名,这里的数组名表示整个数组,计算的是整个数组的大小,单位是字节。
&数组名,这里的数组名表示整个数组,取出的是整个数组的地址(整个数组的地址和数组首元素的地址是有区别的)。
我们可以测试如下代码

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("&arr[0] = %p\n", &arr[0]);printf( "arr = %p\n", arr);printf("&arr = %p\n", &arr);return 0;
}

结果是一致的,那arr和&arr有啥区别呢?再看下面代码:

#include <stdio.h>
int main()
{int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };printf("&arr[0]   = %p\n", &arr[0]);printf("&arr[0]+1 = %p\n", &arr[0] + 1);printf("arr       = %p\n", arr);printf("arr+1     = %p\n", arr + 1);printf("&arr      = %p\n", &arr);printf("&arr+1    = %p\n", &arr + 1);return 0;
}

结果
可以发现&arr[0]&arr[0]+1相差 4 个字节,arrarr+1相差 4 个字节,这是因为&arr[0]arr都是首元素的地址,+1就是跳过一个元素。而&arr&arr+1相差 40 个字节,这是因为&arr是数组的地址,+1操作是跳过整个数组。至此,数组名的意义就清楚了,数组名是数组首元素的地址,但有上述 2 个例外。

2. 使用指针访问数组

下面我们看如何使用指针快速访问数组,下面给出常见写法
注意:语句上面的注释代表等价

#include<stdio.h>int main()
{int arr[10] = { 0 };//使用指针操作数组int sz = sizeof(arr) / sizeof(arr[0]);int* p = arr;//输入for (int i = 0; i < sz; i++){/*scanf("%d", p);p++;*/scanf("%d", p + i);}//输出p = arr;for (int i = 0; i < sz; i++){/*printf("%d", *p);p++;*//*printf("%d ", *(p + i));*//*printf("%d ", arr[i]);*//*printf("%d ", p[i]);*/printf("%d ", i[arr]);//可以但不推荐,毕竟太奇怪了}return 0;
}

最后自己敲出来理解一下。

3. 一维数组传参的本质

数组可以传递给函数,本小节讨论数组传参的本质。先看一个问题,之前都是在函数外部计算数组的元素个数,能否把数组传给函数后,在函数内部求数组的元素个数呢?

#include <stdio.h>
void test(int arr[])//arr[]相当于指针变量,x64是8字节
{int sz2 = sizeof(arr)/sizeof(arr[0]);printf("sz2 = %d\n", sz2);
}
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};int sz1 = sizeof(arr)/sizeof(arr[0]);printf("sz1 = %d\n", sz1);test(arr);return 0;
}

输出结果:
结果
分析

发现在函数内部没有正确获得数组的元素个数。

这是因为数组传参的本质是:数组名是数组首元素的地址,数组传参时传递的是数组名,即本质上传递的是数组首元素的地址。
所以函数形参部分理论上应该使用指针变量来接收首元素的地址。在函数内部写sizeof(arr)计算的是一个地址的大小(单位字节)而不是数组的大小(单位字节)。正是因为函数的参数部分本质是指针,所以在函数内部无法求出数组元素个数。

void test(int arr[])//参数写成数组形式,本质上还是指针
{printf("%d\n", sizeof(arr));
}
void test(int* arr)//参数写成指针形式
{printf("%d\n", sizeof(arr));//计算一个指针变量的大小
}
int main()
{int arr[10] = {1,2,3,4,5,6,7,8,9,10};test(arr);return 0;
}

两个的结果是一致的x64都是8;
总结:一维数组传参,形参的部分可以写成数组的形式,也可以写成指针的形式。

4. 冒泡排序

排序在数据结构中会重点讲,这里简单说一下冒泡排序
冒泡排序的核心思想是:两两相邻的元素进行比较。

方法1:

//方法1
void bubble_sort(int arr[], int sz)//参数接收数组元素个数
{int i = 0;for(i=0; i<sz-1; i++){int j = 0;for(j=0; j<sz-i-1; j++){if(arr[j] > arr[j+1]){int tmp = arr[j];arr[j] = arr[j+1];arr[j+1] = tmp;}}}
}
int main()
{int arr[] = {3,1,7,5,8,9,0,2,4,6};int sz = sizeof(arr)/sizeof(arr[0]);bubble_sort(arr,sz);int i=0;for(i=0;i<sz;i++){printf("%d",arr[i]);}return 0;
}

方法2 - 优化:

//方法2-优化
void bubble_sort(int arr[],int sz)
{int i=0;for(i=0;i<sz-1;i++){int flag=1;//假设这一趟已经有序了int j=0;for(j=0;j<sz-i-1;j++){if(arr[j]>arr[j+1]){int tmp = arr[j];arr[j]= arr[j+1];arr[j+1]=tmp;flag = 0;}}if(flag==1)//这一趟没交换就说明已经有序,后续无序排序了break;}
}
int main()
{int arr[]={3,1,7,5,8,9,0,2,4,6};int sz=sizeof(arr)/sizeof(arr[0]);bubble_sort(arr, sz);int i=0;for(i=0;i<sz;i++){printf("%d",arr[i]);}return 0;
}

5. 二级指针

指针变量也是变量,有地址,指针变量的地址存放在二级指针中。
二级指针

#include <stdio.h>
int main()
{int a=10;int *pa = &a; int**ppa=&pa;return 0;
}

对于二级指针的运算有:

  • *ppa:通过对ppa中的地址进行解引用,找到的是pa*ppa其实访问的就是pa
int b = 20;
*ppa = &b;//等价于 pa = &b;
  • **ppa:先通过*ppa找到pa,然后对pa进行解引用操作*pa,找到的是a
**ppa = 30;
//等价于*pa = 30;
//等价于a = 30;
int main()
{int a = 10;int* pa = &a;int** ppa = &pa; printf("%d\n", a);printf("%d\n", *pa);printf("%d\n", **ppa);return 0;
}

打印结果

6. 指针数组

指针数组是存放指针的数组,类比整型数组存放整型、字符数组存放字符。指针数组的每个元素都是用来存放地址(指针)的,每个元素又可以指向一块区域。
示意图
简单示例:

int main()
{int a = 10, b = 20, c = 30,d = 40;int* parr[4] = { &a,&b,&c,&d };for (int i = 0; i < 4; i++){printf("%d ", *(parr[i]));}return 0;
}

结果

7. 指针数组模拟二维数组

代码演示:

#include <stdio.h>
int main()
{int arr1[5] = { 1,2,3,4,5 };int arr2[5] = { 2,3,4,5,6 };int arr3[5] = { 3,4,5,6,7 };int* parr[3] = { arr1,arr2,arr3 };int i = 0;for (i = 0; i < 3; i++){int j = 0;for (j = 0; j < 5; j++){printf("%d ", parr[i][j]);}printf("\n");}return 0;
}

parr[i]用于访问parr数组的元素,parr[i]找到的数组元素指向了整型一维数组,parr[i][j]就是整型一维数组中的元素。
结果

上述代码模拟出二维数组的效果,但实际上并非完全是二维数组,因为每一行并非是连续的。
图

总结

本文大部分内容都是围绕数组和指针两者结合使用,并且涉及排序这个数据结构的重要内容,喜欢或觉得有用的话还希望点赞关注收藏三连支持一下,谢谢。

相关文章:

C语言【指针篇】(三)

C语言【指针篇】&#xff08;三&#xff09; 前言正文1. 数组名的理解2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序5. 二级指针6. 指针数组7. 指针数组模拟二维数组 总结 前言 本文主要基于前面对指针的掌握&#xff0c;进一步学习&#xff1a;数组名的理解、使用指针…...

DevSecOps普及:安全与开发运维的深度融合

一、引言 随着软件开发模式的演进&#xff0c;DevOps已成为现代软件工程的主流实践。然而&#xff0c;在传统的DevOps流程中&#xff0c;安全往往被视为开发和运维之外的额外环节&#xff0c;导致安全漏洞在产品交付后才被发现&#xff0c;增加了修复成本和风险。为了解决这一…...

【JAVA-数据结构】Map和Set

上一篇我们聊到了排序相关内容&#xff0c;这一篇我们对Map和Set进行一系列说明&#xff0c;大家自取。 1.搜索树 1.1 概念 二叉搜索树又称二叉排序树&#xff0c;它或者是一棵空树&#xff0c;或者是具有以下性质的二叉树: 若它的左子树不为空&#xff0c;则左子树上所有节…...

从 0 到 1,用 Python 构建超实用 Web 实时聊天应用

从 0 到 1&#xff0c;用 Python 构建超实用 Web 实时聊天应用 本文深入剖析如何运用 Python 的 Flask 框架与 SocketIO 扩展&#xff0c;搭建一个功能完备的 Web 实时聊天应用。从环境搭建、前后端代码实现&#xff0c;到最终运行展示&#xff0c;逐步拆解关键步骤&#xff0…...

轻松搭建:使用Anaconda创建虚拟环境并在PyCharm中配置

一、使用Anaconda创建虚拟环境 1. 安装Anaconda 2..conda常用的命令 3. 创建虚拟环境-以搭建MachineVision为例 4. 激活虚拟环境 5. 安装依赖包 二、PyCharm配置环境 在进行Python项目开发时&#xff0c;合理的环境管理是必不可少的&#xff0c;特别是当你在多个项目中…...

【新人系列】Python 入门专栏合集

✍ 个人博客&#xff1a;https://blog.csdn.net/Newin2020?typeblog &#x1f4dd; 专栏地址&#xff1a;https://blog.csdn.net/newin2020/category_12801353.html &#x1f4e3; 专栏定位&#xff1a;为 0 基础刚入门 Python 的小伙伴提供详细的讲解&#xff0c;也欢迎大佬们…...

linux ununtu安装mysql 怎么在my.cnf文件里临时配置 无密码登录

在 Ubuntu 中&#xff0c;若需通过修改 my.cnf 临时禁用 MySQL 的密码验证&#xff08;例如忘记 root 密码需要重置&#xff09;&#xff0c;可以通过添加 skip-grant-tables 选项实现。以下是具体步骤&#xff1a; 步骤 1&#xff1a;编辑 MySQL 配置文件 1. 打开 MySQL 配置…...

git,bash - 从一个远端git库只下载一个文件的方法

文章目录 git,bash - 从一个远端git库只下载一个文件的方法概述笔记写一个bash脚本来自动下载get_github_raw_file_from_url.shreanme_file.shfind_key_value.sh执行命令 END git,bash - 从一个远端git库只下载一个文件的方法 概述 github上有很多大佬上传了电子书库&#xf…...

python生成的exe文件防止反编译(pyinstaller加密)

python生成的exe文件可以轻松的被破解&#xff0c;为了防止反编译&#xff0c;知乎友友们给出了很多不同的见解&#xff0c;其中主流的回答是pyinstaller加密和niutka打包python&#xff0c;本篇介绍的方法是第一种&#xff0c;pyinstaller打包的时候进行加密&#xff0c;防破解…...

Android移动应用开发实践-1-下载安装和简单使用Android Studio 3.5.2版本(频频出错)

一、下载安装 1.Android Studio3.5.2下载地址&#xff1a;Android Studio3.5.2下载地址 其他版本下载地址&#xff1a;其他版本下载地址 2.安装教程&#xff08;可以多找几个看看&#xff09; 安装 | 手把手教你Android studio 3.5.2安装&#xff08;安装教程&#xff09;_a…...

Android Audio实战——音频相关基础概念(附)

Android Audio 开发其实就是媒体源数字化的过程,通过将声波波形信号通过 ADC 转换成计算机支持的二进制的过程叫做音频采样 (Audio Sampling)。采样 (Sampling) 的核心是把连续的模拟信号转换成离散的数字信号。 一、声音的属性 1、响度 (Loudness) 响度是指人类可以感知到的…...

5分钟使用Docker部署Paint Board快速打造专属在线画板应用

文章目录 前言1.关于Paint Board2.本地部署paint-board3.使用Paint Board4.cpolar内网穿透工具安装5.创建远程连接公网地址6.固定Paint Board公网地址 &#x1f4a1; 推荐 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住…...

vue实现根据点击或滑动展示对应高亮

页面需求&#xff1a; 点击左侧版本号&#xff0c;右侧展示对应版本内容并置于顶部右侧某一内容滚动到顶部时&#xff0c;左侧需要展示高亮 实现效果&#xff1a; 实现代码&#xff1a; <template><div><div class"historyBox pd-20 bg-white">…...

java练习(41)

ps&#xff1a;题目来自力扣 最接近的三数之和 给你一个长度为 n 的整数数组 nums 和 一个目标值 target。请你从 nums 中选出三个整数&#xff0c;使它们的和与 target 最接近。 返回这三个数的和。 假定每组输入只存在恰好一个解。 import java.util.Arrays;class Solut…...

【二分查找 图论】P8794 [蓝桥杯 2022 国 A] 环境治理|普及

本文涉及的基础知识点 本博文代码打包下载 C二分查找 C图论 [蓝桥杯 2022 国 A] 环境治理 题目描述 LQ 国拥有 n n n 个城市&#xff0c;从 0 0 0 到 n − 1 n - 1 n−1 编号&#xff0c;这 n n n 个城市两两之间都有且仅有一条双向道路连接&#xff0c;这意味着任意两…...

Docker镜像面试题及参考答案

目录 Docker 镜像与容器的关系是什么?如何理解 “镜像为静态定义,容器为运行时实体”? 解释 Docker 镜像的联合文件系统(UnionFS)分层机制,为何这种设计能优化存储效率? Docker 镜像的 LABEL 标签有什么作用?如何通过标签管理多版本镜像? 镜像的 latest 标签有哪些…...

浅显易懂HashMap的数据结构

HashMap 就像一个大仓库&#xff0c;里面有很多小柜子&#xff08;数组&#xff09;&#xff0c;每个小柜子可以挂一串链条&#xff08;链表&#xff09;&#xff0c;链条太长的时候会变成更高级的架子&#xff08;红黑树&#xff09;。下面用超简单的例子解释&#xff1a; ​壹…...

Fisher信息矩阵与Hessian矩阵:区别与联系全解析

Fisher信息矩阵与Hessian矩阵&#xff1a;区别与联系全解析 在统计学和机器学习中&#xff0c;Fisher信息矩阵&#xff08;FIM&#xff09;和Hessian矩阵是两个经常出现的概念&#xff0c;它们都与“二阶信息”有关&#xff0c;常用来描述函数的曲率或参数的敏感性。你可能听说…...

【HTML— 快速入门】HTML 基础

准备工作 vscode下载 百度网盘 Subline Text 下载 Sublime Text下载 百度网盘 vscode 下载 Sublime Text 是一款轻量好用的文本编辑器&#xff0c;我们在写前端代码时&#xff0c;使用 Sublime Text 打开比使用记事本打开&#xff0c;得到的代码体验更好&#xff0c;比 vscode…...

Docker 与 Serverless(无服务器架构)

Serverless&#xff08;无服务器架构&#xff09; 是一种新的云计算架构&#xff0c;它通过让开发者专注于业务逻辑而无需管理服务器基础设施&#xff0c;来简化应用的开发和部署。Serverless 模型通常由云服务提供商管理基础设施的所有方面&#xff0c;而开发者只需提供代码和…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

C++实现分布式网络通信框架RPC(3)--rpc调用端

目录 一、前言 二、UserServiceRpc_Stub 三、 CallMethod方法的重写 头文件 实现 四、rpc调用端的调用 实现 五、 google::protobuf::RpcController *controller 头文件 实现 六、总结 一、前言 在前边的文章中&#xff0c;我们已经大致实现了rpc服务端的各项功能代…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:

一、属性动画概述NETX 作用&#xff1a;实现组件通用属性的渐变过渡效果&#xff0c;提升用户体验。支持属性&#xff1a;width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项&#xff1a; 布局类属性&#xff08;如宽高&#xff09;变化时&#…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

IGP(Interior Gateway Protocol,内部网关协议)

IGP&#xff08;Interior Gateway Protocol&#xff0c;内部网关协议&#xff09; 是一种用于在一个自治系统&#xff08;AS&#xff09;内部传递路由信息的路由协议&#xff0c;主要用于在一个组织或机构的内部网络中决定数据包的最佳路径。与用于自治系统之间通信的 EGP&…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

vue3 定时器-定义全局方法 vue+ts

1.创建ts文件 路径&#xff1a;src/utils/timer.ts 完整代码&#xff1a; import { onUnmounted } from vuetype TimerCallback (...args: any[]) > voidexport function useGlobalTimer() {const timers: Map<number, NodeJS.Timeout> new Map()// 创建定时器con…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...