深入理解 并查集LRUCaChe
并查集&LRUCaChe

个人主页:顾漂亮
文章专栏:Java数据结构
1.并查集的原理
在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后根据一定规律将归于同一组元素的集合合并。在此过程中要反复运用到查询某一个元素归属于哪一个集合的运算。适合于描述这类问题的抽象数据类型称为并查集,(union - find set)并查集的底层运用的是数组。
举例:
1.初始情况:假设现在有10个元素(0 - 9),开始情况是每一个元素相互独立,每个元素自成一个单元素集合。

提问:为什么初始情况下数组元素全为-1?
在回答上述问题之前,我们应该先了解以下并查集的使用规则:
- 数组的下标对应集合中的元素,例如数组9下标对应的就是9这个元素
- 数组中的值如果为负数,负号表示根,数字代表该集合中元素的个数
- 数组中的值如果是非负数,代表该元素双亲结点在数组中的下标
根据上述规则,我们可以知道初始情况下10个元素,每个元素自成一个单元素集合,因此-1代表,每个单元素集合中只有一个元素,并且这个元素的根也是其本身。
2.**初次合并:**将单元素集合按照下图所示规律进行合并成三个集合

可以得到并查集图形为:

3.第二次合并:将单元素集合按照下图所示规律进行合并成三个集合

可以得到并查集图形为:

2.并查集可以解决的问题
- 查找元素属于哪一个集合
- 根据数组表示的树形关系向上寻找,一直找到根
- 查看两个元素是否属于同一个集合
- 比较两个集合的根是否相同,相同属于同一个集合,反之则不属于一个集合
- 将两个集合合并成一个集合
- 先将两个集合的根合并
- 集合的个数
- 遍历数组,数组中元素为非负数的个数即为集合的个数
3.并查集的代码实现
import java.util.Arrays;public class UnionFindSet {public int[] elem;//底层为数组public UnionFindSet(int n){//初始化数组大小为nelem = new int[n];//将数组中元素初始化为-1Arrays.fill(elem,-1);}//查找根public int findRoot(int val){if(val < 0){throw new IndexOutOfBoundsException("val不合法");}while(elem[val] >= 0){val = elem[val];}return val;}//合并操作public void union(int x1, int x2){//确定两个元素根节点int index1 = findRoot(x1);int index2 = findRoot(x2);//如果两个元素属于同一个集合if(index2 == index1){return;}//将两个集合根节点合并elem[index1] = elem[index1]+elem[index2];elem[index2] = index1;}//判断两个数字是不是在同一集合中public boolean isSameSet(int x1, int x2){//确定两个元素根节点int index1 = findRoot(x1);int index2 = findRoot(x2);if(index2 == index1){return true;}return false;}//求数组中集合的个数public int getCount(){int count = 0;for (int i = 0; i < elem.length; i++) {if(elem[i] < 0){count++;}}return count;}//打印数组public void printSet(){for (int i = 0; i < elem.length; i++) {System.out.print(elem[i] + " ");}System.out.println();}
}
4.并查集相关面试题
省份问题:
- 求解思路:
- 实现一个并查集
- 如果两个城市联通,放在一个集合中
- 返回并查集中元素小于0的个数即为省份数量
class Solution {public int findCircleNum(int[][] isConnected) {int n = isConnected.length;UnionFindSet ufs = new UnionFindSet(n);//行for(int i = 0; i < n; i++){//列for(int j = 0; j < isConnected[i].length; j++){if(isConnected[i][j] == 1){//合并ufs.union(i,j);} }}return ufs.getCount();}}class UnionFindSet {public int[] elem;//底层为数组public UnionFindSet(int n){elem = new int[n];//初始化为n大小的数组Arrays.fill(elem, -1);//将数组初始化为-1,注意,为什么初始化为-1?}//查找根public int findRoot(int val){if(val < 0){throw new IndexOutOfBoundsException("数据不合法");}//注意这个循环算法易错while(elem[val] >= 0){val = elem[val];}return val;}//合并操作public void union(int x1, int x2){int index1 = findRoot(x1);int index2 = findRoot(x2);//如果根相同,直接返回if(index2 == index1){return;}//注意执行顺序elem[index1] = elem[index1] + elem[index2];elem[index2] = index1;}//判断两个数字是不是在同一集合中public boolean isSameSet(int x1, int x2){int index1 = findRoot(x1);int index2 = findRoot(x2);if(index2 == index1){return true;}return false;}//求数组中集合的个数public int getCount(){int count = 0;for (int i = 0; i < elem.length; i++) {if(elem[i] < 0){count++;}}return count;}//打印数组public void printSet(){for (int i = 0; i < elem.length; i++) {System.out.print(elem[i] + " ");}System.out.println();}
}
等式方程可满足性:
- 解题思路:
- 将"=="两边数据放入一个集合中
- 检查"!="两边数据是否在同一个集合中,如果在返回false,如果不再返回true
class Solution {public boolean equationsPossible(String[] equations) {UnionFindSet set = new UnionFindSet(26);//一共有26个英文字母//1. 将“=”号左右元素合并成同一个集合for(int i = 0; i < equations.length; i++){if(equations[i].charAt(1) == '='){set.union(equations[i].charAt(0) - 'a', equations[i].charAt(3) - 'a');}}//2. 检查“!”左右两边是否在同一个集合中for(int i = 0; i < equations.length; i++){if(equations[i].charAt(1) == '!'){if(set.isSameSet(equations[i].charAt(0) - 'a', equations[i].charAt(3) - 'a')){return false;}}}return true;}
}class UnionFindSet {public int[] elem;//底层为数组public UnionFindSet(int n){elem = new int[n];//初始化为n大小的数组Arrays.fill(elem, -1);//将数组初始化为-1,注意,为什么初始化为-1?}//查找根public int findRoot(int val){if(val < 0){throw new IndexOutOfBoundsException("数据不合法");}//注意这个循环算法易错while(elem[val] >= 0){val = elem[val];}return val;}//合并操作public void union(int x1, int x2){int index1 = findRoot(x1);int index2 = findRoot(x2);//如果根相同,直接返回if(index2 == index1){return;}//注意执行顺序elem[index1] = elem[index1] + elem[index2];elem[index2] = index1;}//判断两个数字是不是在同一集合中public boolean isSameSet(int x1, int x2){int index1 = findRoot(x1);int index2 = findRoot(x2);if(index2 == index1){return true;}return false;}//求数组中集合的个数public int getCount(){int count = 0;for (int i = 0; i < elem.length; i++) {if(elem[i] < 0){count++;}}return count;}//打印数组public void printSet(){for (int i = 0; i < elem.length; i++) {System.out.print(elem[i] + " ");}System.out.println();}
}
LRUCaChe
1.概念解析:
1.1什么是LRU?
LRU(Last recently used)的缩写,意思是最近最少使用,是一种CaChe替换算法。
1.2什么是Cache?
狭义上:Cache是指位于CPU和主存间的快速RAM,通常它不像系统主存那样使用DRAM技术,而是用昂贵但是较为快速的SRAM技术
广义上:位于速度相差较大的两种硬件之间,用于协调两者数据传输速度差异的结构。处理CPU与主内存之间有Cache,内存与磁盘之间也有, 乃至在硬件与网络之间也有某种意义上的Cache–称为Internet临时文件夹或网络内容缓存等
Cache的内存容量有限,因此当Cache的容量用完后,而又有新的内容需要添加进来时候,就需要挑选并舍弃相应的元素,从而腾出空间来存放新的内容。LRUCaChe的替换原则就是将最近最少使用的内容替换掉
2.LRUCache的实现
其实现方式可以有很多,但是为了追求最高的效率,我们采用哈希表和双向链表来实现LRUCaChe,哈希表的增删查改是O(1),双向链表可以实现任意位置插入删除为O(1)
2.1JDK中的LinkedHashMap

参数说明:
-
initialCapacity:容量大小 -
loadFacto:加载因子,使用无参构造方法时,此值默认为0.75f -
accessOrder:默认为false->基于插入顺序存放; true ->基于访问顺序
使用案例:
import java.util.LinkedHashMap;
import java.util.Map;public class LRUCache extends LinkedHashMap<Integer, Integer> {public int capacity;//容量public LRUCache(int capacity){super(capacity, 0.75f, true);//调用父类构造函数,必须放在构造函数第一行this.capacity = capacity;}public int get(int key){return super.getOrDefault(key, -1);}public void put(int key, int value){super.put(key, value);}//必须要重写上述方法@Overrideprotected boolean removeEldestEntry(Map.Entry<Integer, Integer> eldest) {return size() > capacity;//默认返回false,如果为true,则需要进行移除最近未使用的元素}
}
2.2LRUCaChe的实现
package LRUCache;import java.util.HashMap;
import java.util.Map;public class MyLRUCache {//双向链表节点static class LRUNode{public int val;public int key;public LRUNode prev;public LRUNode next;//给一个无参构造方法,初始化带头带尾双向链表头节点public LRUNode(){}public LRUNode(int key, int val){this.key = key;this.val = val;}//重写Object类中的方法,将双向链表节点值以字符串形式输出@Overridepublic String toString() {return "{" +"key=" + key +", val=" + val +'}';}}//需要声明一个哈希表,用来检查节点值是否存在private Map<Integer, LRUNode> cache;private int usedSize;//双向链表中有效数据的个数private int capacity;//双向链表的容量大小private LRUNode head, tail;public MyLRUCache(int capacity){this.usedSize = 0;this.capacity = capacity;cache = new HashMap<>();//实例化哈希表//伪头节点/尾节点head = new LRUNode();tail = new LRUNode();//先将链表头尾节点相连head.next = tail;tail.prev = head;}//存储元素public void put(int key, int val){//1.查找当前的key是否存储过LRUNode node = cache.get(key);//2.判断key在链表中是否存储过if (node != null){//存储过,更新节点对应的valnode.val = val;//将节点移动到末端moveToTail(node);}else{//没有存储过,新建一个节点值LRUNode cur = new LRUNode(key, val);//先插入哈希中cache.put(key, cur);//将节点添加到链表尾部addToTail(cur);usedSize++;//判断容量是否充足if(usedSize > capacity){//删除最近未使用的节点removeNode(head.next);//删除哈希表中的节点cache.remove(head.next.key);usedSize--;}}}private void addToTail(LRUNode node) {tail.prev.next = node;node.next = tail;node.prev = tail.prev;tail.prev = node;}private void moveToTail(LRUNode node) {//先删除节点removeNode(node);//将节点尾插addToTail(node);}//删除节点private void removeNode(LRUNode node) {node.prev.next = node.next;node.next.prev = node.prev;}//获取元素public int get(int key){//判断元素是否在链表中LRUNode node = cache.get(key);if(node == null) {return -1;}else{moveToTail(node);}return node.val;}public void printLRU(){LRUNode cur = head.next;while(cur != tail){System.out.print(cur);cur = cur.next;}System.out.println();}public static void main(String[] args) {MyLRUCache lruCache = new MyLRUCache(3);lruCache.put(100,10);lruCache.put(110,11);lruCache.put(120,12);lruCache.printLRU();System.out.println("获取元素");System.out.println(lruCache.get(110));System.out.println(lruCache.get(100));lruCache.printLRU();System.out.println("存放元素,会删除头节点,因为头节点是最近最少使用的: ");lruCache.put(999,99);lruCache.printLRU();}}
相关文章:
深入理解 并查集LRUCaChe
并查集&LRUCaChe 个人主页:顾漂亮 文章专栏:Java数据结构 1.并查集的原理 在一些应用问题中,需要将n个不同的元素划分成一些不相交的集合。开始时,每个元素自成一个单元素集合,然后根据一定规律将归于同一组元素的…...
详解 c++ 中的 namespage
C 中的命名空间很特别,其他编程语言基本都没有。命名空间介于函数与类之间,兼顾了二者的一些优点。这篇博客根据 chatgpt 的回答整理。 文章目录 **1. 什么是 namespace(命名空间)?****2. 语法****3. 使用 namespace 访…...
50周学习go语言:第五周 复合类型与词频统计
以下是第五周复合类型(数组、切片与映射)的详细学习内容,按照第四周的深度要求设计: 第五周:复合类型与词频统计 一、复合类型详解 1. 数组(Array) // 声明与初始化 var arr1 [3]int …...
HTTP非流式请求 vs HTTP流式请求
文章目录 HTTP 非流式请求 vs 流式请求一、核心区别 服务端代码示例(Node.js/Express)非流式请求处理流式请求处理 客户端请求示例非流式请求(浏览器fetch)流式请求处理(浏览器fetch) Python客户端示例&…...
深圳南柯电子|医疗设备EMC测试整改检测:零到一,保障医疗安全
在当今医疗科技飞速发展的时代,医疗设备的电磁兼容性(EMC)已成为确保其安全、有效运行的关键要素之一。EMC测试整改检测不仅关乎设备的性能稳定性,更是保障患者安全、避免电磁干扰引发医疗事故的重要措施。 一、医疗设备EMC测试整…...
详解:事务注解 @Transactional
创作内容丰富的干货文章很费心力,感谢点过此文章的读者,点一个关注鼓励一下作者,激励他分享更多的精彩好文,谢谢大家! Transactional 是 Spring Framework 中常用的注解之一,它可以被用于管理事务。通过使…...
【虚拟仪器技术】labview操作指南和虚拟仪器技术习题答案(一)
今天是2025年2月24日,画的是fate/Grand Order里面的阿尔托莉雅.卡斯特,武内老师的画。 目录 第1章 第2章 第3章 第4章 第5章 关注作者了解更多 我的其他CSDN专栏 毕业设计 求职面试 大学英语 过程控制系统 工程测试技术 虚拟仪器技术 可编程…...
在Linux桌面上创建Idea启动快捷方式
1、在桌面新建idea.desktop vim idea.desktop [Desktop Entry] EncodingUTF-8 NameIntelliJ IDEA CommentIntelliJ IDEA Exec/home/software/idea-2021/bin/idea.sh Icon/home/software/idea-2021/bin/idea.svg Terminalfalse TypeApplication CategoriesApplication;Developm…...
渗透测试(WAF过滤information_schema库的绕过,sqllib-46关,海洋cms9版本的注入)
1.sqlin-lib 46关 打开网站配置文件发现 此网站的对ID进行了排序,我们可以知道,order by接不了union ,那我们可以通过测试sort,rond等函数,观察网页的反馈来判断我们的盲注是否正确 我们发现 当参数有sort来排序时&…...
Unity基础——资源导出分享为Unity Package
一.选中要打包的文件夹,右击,点击Exporting package 二.勾选 Include Dependencies,点击Export Include Dependencies:代表是否包含资源依赖的选项 三.选择保存的位置,即可生成Unity package 最终形成文件:…...
C语言【指针篇】(三)
C语言【指针篇】(三) 前言正文1. 数组名的理解2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序5. 二级指针6. 指针数组7. 指针数组模拟二维数组 总结 前言 本文主要基于前面对指针的掌握,进一步学习:数组名的理解、使用指针…...
DevSecOps普及:安全与开发运维的深度融合
一、引言 随着软件开发模式的演进,DevOps已成为现代软件工程的主流实践。然而,在传统的DevOps流程中,安全往往被视为开发和运维之外的额外环节,导致安全漏洞在产品交付后才被发现,增加了修复成本和风险。为了解决这一…...
【JAVA-数据结构】Map和Set
上一篇我们聊到了排序相关内容,这一篇我们对Map和Set进行一系列说明,大家自取。 1.搜索树 1.1 概念 二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树: 若它的左子树不为空,则左子树上所有节…...
从 0 到 1,用 Python 构建超实用 Web 实时聊天应用
从 0 到 1,用 Python 构建超实用 Web 实时聊天应用 本文深入剖析如何运用 Python 的 Flask 框架与 SocketIO 扩展,搭建一个功能完备的 Web 实时聊天应用。从环境搭建、前后端代码实现,到最终运行展示,逐步拆解关键步骤࿰…...
轻松搭建:使用Anaconda创建虚拟环境并在PyCharm中配置
一、使用Anaconda创建虚拟环境 1. 安装Anaconda 2..conda常用的命令 3. 创建虚拟环境-以搭建MachineVision为例 4. 激活虚拟环境 5. 安装依赖包 二、PyCharm配置环境 在进行Python项目开发时,合理的环境管理是必不可少的,特别是当你在多个项目中…...
【新人系列】Python 入门专栏合集
✍ 个人博客:https://blog.csdn.net/Newin2020?typeblog 📝 专栏地址:https://blog.csdn.net/newin2020/category_12801353.html 📣 专栏定位:为 0 基础刚入门 Python 的小伙伴提供详细的讲解,也欢迎大佬们…...
linux ununtu安装mysql 怎么在my.cnf文件里临时配置 无密码登录
在 Ubuntu 中,若需通过修改 my.cnf 临时禁用 MySQL 的密码验证(例如忘记 root 密码需要重置),可以通过添加 skip-grant-tables 选项实现。以下是具体步骤: 步骤 1:编辑 MySQL 配置文件 1. 打开 MySQL 配置…...
git,bash - 从一个远端git库只下载一个文件的方法
文章目录 git,bash - 从一个远端git库只下载一个文件的方法概述笔记写一个bash脚本来自动下载get_github_raw_file_from_url.shreanme_file.shfind_key_value.sh执行命令 END git,bash - 从一个远端git库只下载一个文件的方法 概述 github上有很多大佬上传了电子书库…...
python生成的exe文件防止反编译(pyinstaller加密)
python生成的exe文件可以轻松的被破解,为了防止反编译,知乎友友们给出了很多不同的见解,其中主流的回答是pyinstaller加密和niutka打包python,本篇介绍的方法是第一种,pyinstaller打包的时候进行加密,防破解…...
Android移动应用开发实践-1-下载安装和简单使用Android Studio 3.5.2版本(频频出错)
一、下载安装 1.Android Studio3.5.2下载地址:Android Studio3.5.2下载地址 其他版本下载地址:其他版本下载地址 2.安装教程(可以多找几个看看) 安装 | 手把手教你Android studio 3.5.2安装(安装教程)_a…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)
概述 在 Swift 开发语言中,各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过,在涉及到多个子类派生于基类进行多态模拟的场景下,…...
Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
华为OD机试-食堂供餐-二分法
import java.util.Arrays; import java.util.Scanner;public class DemoTest3 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseint a in.nextIn…...
Ascend NPU上适配Step-Audio模型
1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...
vue3+vite项目中使用.env文件环境变量方法
vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量,这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...
企业如何增强终端安全?
在数字化转型加速的今天,企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机,到工厂里的物联网设备、智能传感器,这些终端构成了企业与外部世界连接的 “神经末梢”。然而,随着远程办公的常态化和设备接入的爆炸式…...
深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...
MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
Qwen系列之Qwen3解读:最强开源模型的细节拆解
文章目录 1.1分钟快览2.模型架构2.1.Dense模型2.2.MoE模型 3.预训练阶段3.1.数据3.2.训练3.3.评估 4.后训练阶段S1: 长链思维冷启动S2: 推理强化学习S3: 思考模式融合S4: 通用强化学习 5.全家桶中的小模型训练评估评估数据集评估细节评估效果弱智评估和民间Arena 分析展望 如果…...
