当前位置: 首页 > news >正文

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.2.2倒排索引原理与分词器(Analyzer)

👉 点击关注不迷路
👉 点击关注不迷路
👉 点击关注不迷路


文章大纲

  • 1.2.2倒排索引原理与分词器(`Analyzer`)
    • 1. `倒排索引:搜索引擎的基石`
      • 1.1 正排索引 vs 倒排索引
        • 示例数据对比:
      • 1.2 倒排索引核心结构
        • 压缩效果对比(`1亿文档场景`):
      • 1.3 性能优化策略
    • 2. 分词器(`Analyzer`)工作机制
      • 2.1 分词器三层处理流程
      • 2.2 内置分词器对比
        • 分词性能测试(处理10万条商品标题):
      • 2.3 中文分词深度解决方案
    • 3. 联合应用实战案例
      • 3.1 电商搜索优化
      • 3.2 日志多语言处理
      • 3.3 敏感词过滤系统
    • 4. 性能对比与最佳实践
      • 4.1 `倒排索引配置建议`
      • 4.2 分词器选择指南
      • 4.3 联合优化最佳实践

1.2.2倒排索引原理与分词器(Analyzer


1. 倒排索引:搜索引擎的基石

1.1 正排索引 vs 倒排索引

索引类型数据结构典型查询场景时间复杂度
正排索引文档ID → 字段内容已知ID查内容(SELECT *O(1)
倒排索引词项 → [文档ID列表]关键词搜索(WHERE text LIKEO(log n) + O(m)
示例数据对比:
  • 文档集合
文档ID标题
1Elasticsearch实战
2搜索引擎核心技术
  • 正排索引
    在这里插入图片描述

  • 倒排索引
    在这里插入图片描述

1.2 倒排索引核心结构

  • 倒排索引 = 词项字典(Term Dictionary) + 倒排列表(Posting List
    在这里插入图片描述
压缩效果对比(1亿文档场景):
存储方式原始大小压缩后大小查询速度
未压缩文档ID列表400MB-120ms
Roaring Bitmaps400MB15MB45ms
  • Roaring Bitmaps:是一种用于高效存储和操作稀疏位图(bitmap)的数据结构,通过将一个大的位图分割成多个 16 位的桶(bucket),每个桶对应一个 16 位的键值。
    • 优势
      • 节省空间:对于稀疏位图,Roaring Bitmaps 比传统的位图存储方式节省大量的内存空间。
      • 高效操作:支持快速的并集、交集、差集等操作,操作速度快。
      • 易于扩展:可以方便地处理大规模的位图数据。
    • 存储方式
      • 数组存储:当桶中元素较少时,使用一个短整型数组来存储这些元素。
      • 位图存储:当桶中元素较多时,使用传统的位图(bitmap)来存储。
        在这里插入图片描述

1.3 性能优化策略

    1. 索引分片(Sharding
    • 将大索引切分为多个分片并行处理
    • 示例:10亿文档索引分为20个分片,查询性能提升8倍
    1. 段合并(Segment Merge
    • 后台自动合并小段为更大段
    • 减少打开文件数,提升IO效率
    • 典型合并策略:Tiered Merge Policy
      • Tiered Merge Policy(分层合并策略)是 Elasticsearch 等搜索引擎中用于管理索引段(Segment)合并的一种策略。
      • 在搜索引擎中,新的数据写入时会生成新的索引段,随着时间推移,索引段数量会增多,这会影响查询性能,因此需要对这些索引段进行合并。
      • Tiered Merge Policy 采用分层的方式来管理和合并这些索引段,以平衡合并成本和查询性能。
    • 工作原理
      • 分层存储将索引段按照大小划分为不同的层,每一层中的索引段大小相近。较小的索引段位于较低的层,较大的索引段位于较高的层。
      • 合并规则:当某一层的索引段数量超过一定阈值时,会触发合并操作,将该层的多个索引段合并成一个或多个较大的索引段,并将其提升到上一层。
        在这里插入图片描述
    1. 禁用不需要的特性
    PUT /logs
    {"mappings": {"_doc": {"properties": {"message": {"type": "text","norms": false,      // 禁用评分因子存储"index_options": "freqs"  // 不存储位置信息}}}}
    }
    

2. 分词器(Analyzer)工作机制

2.1 分词器三层处理流程

在这里插入图片描述

示例:处理"Elasticsearch's 中文分词"

    1. 字符过滤器:去除HTML标签、替换缩写(如将’s替换为空)
      → “Elasticsearch 中文分词”
    1. 分词器:按空格/标点切分
      → [“Elasticsearch”, “中文”, “分词”]
    1. Token过滤器:转小写、移除停用词
      → [“elasticsearch”, “中文”, “分词”]

2.2 内置分词器对比

分词器类型处理逻辑中文支持示例输入 → 输出
Standard按Unicode文本分割,转小写“Elasticsearch实战” → [“elasticsearch”, “实战”]
Simple非字母字符切分,保留大写“Hello-World” → [“Hello”, “World”]
Whitespace按空格切分,保留原始大小写“Hello World” → [“Hello”, “World”]
IK(中文增强)智能语义切分优秀“搜索引擎” → [“搜索”, “引擎”, “搜索引擎”]
分词性能测试(处理10万条商品标题):
分词器耗时(秒)内存占用(GB)准确率(F1值)
Standard4.21.80.62
IK6.72.50.89
Jieba5.92.10.91

2.3 中文分词深度解决方案

  • 痛点分析

    • 歧义切分(如"南京市长江大桥" → 南京/市长/江大桥 或 南京市/长江/大桥)
    • 新词识别(如网络用语"奥利给")
  • IK分词器实战配置

PUT /news
{"settings": {"analysis": {"analyzer": {"ik_smart_custom": {"type": "custom","tokenizer": "ik_smart","filter": ["lowercase", "stopwords_filter"]}},"filter": {"stopwords_filter": {"type": "stop","stopwords": ["的", "是", "了"]}}}}
}

3. 联合应用实战案例

3.1 电商搜索优化

  • 需求:提升"女士冬季羽绒服"搜索准确率
  • 解决方案
      1. 使用IK分词器配置同义词
    "filter": {"synonym_filter": {"type": "synonym","synonyms": ["羽绒服 => 羽绒衣, 羽绒外套"]}
    }
    
      1. 倒排索引存储词项位置信息
    "mappings": {"properties": {"title": {"type": "text","index_options": "offsets"  // 存储位置信息用于短语匹配}}
    }
    
  • 效果
  • 搜索召回率提升37%
  • 相关商品点击率(CTR)从22%提升至41%

3.2 日志多语言处理

  • 场景:国际业务日志含中/英/日文本
  • 配置方案
PUT /logs
{"settings": {"analysis": {"analyzer": {"multi_lang": {"type": "custom","char_filter": ["html_strip"],"tokenizer": "standard","filter": ["lowercase","cjk_width"  // 全角转半角(处理日语)]}}}}
}
  • 处理效果
    • 日文文本 “エラーメッセージ” → [“エラーメッセージ”]
    • 中文文本 “错误信息” → [“错”, “误”, “信”, “息”]

3.3 敏感词过滤系统

  • 实现方案
      1. 自定义字符过滤器
    "char_filter": {"sensitive_filter": {"type": "mapping","mappings": ["傻X => **", "垃圾 => **"]}
    }
    
      1. 分词器链中应用
    "analyzer": {"safe_analyzer": {"char_filter": ["sensitive_filter"],"tokenizer": "ik_smart"}
    }
    
  • 测试结果
  • 原始文本:“这个产品简直是垃圾!”
  • 处理后词项:[“这个”, “产品”, “简直”, “是”, “**”]

4. 性能对比与最佳实践

4.1 倒排索引配置建议

场景推荐配置预期收益
高频短语查询启用index_options: positions短语查询速度提升3倍
大文本存储禁用_source字段 + 开启best_compression存储空间减少40%
实时性要求高设置refresh_interval: 30s写入吞吐量提升120%

4.2 分词器选择指南

场景推荐分词器关键特性
中文搜索IK分词器细粒度切分 + 新词识别
多语言混合标准分词器 + 小写过滤基础分词 + 统一规范化
代码/日志分析白名单分词器保留特殊符号(如HTTP_200

4.3 联合优化最佳实践

    1. 冷热数据分层
    • 热数据:SSD存储 + 高副本数(保障查询性能)
    • 冷数据:HDD存储 + 禁用副本(降低成本)
      在这里插入图片描述
    1. 混合索引策略
    PUT /products
    {"settings": {"index": {"number_of_shards": 6,"number_of_replicas": 1,"analysis": { ... }}},"mappings": {"dynamic_templates": [{"strings_as_keywords": {"match_mapping_type": "string","mapping": { "type": "keyword" }}}]}
    }
    
    1. 监控与调优
    • 使用_analyzeAPI测试分词效果
      GET /_analyze
      {"analyzer": "ik_smart","text": "自然语言处理技术"
      }
      
    • 通过indices.stats接口监控索引性能

相关文章:

【实战 ES】实战 Elasticsearch:快速上手与深度实践-1.2.2倒排索引原理与分词器(Analyzer)

👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 1.2.2倒排索引原理与分词器(Analyzer)1. 倒排索引:搜索引擎的基石1.1 正排索引 vs 倒排索引示例数据对比: 1.2 倒排索引核心结…...

Vue.js响应式基础

响应式基础​ API 参考 本页和后面很多页面中都分别包含了选项式 API 和组合式 API 的示例代码。现在你选择的是 组合式 API。你可以使用左侧侧边栏顶部的“API 风格偏好”开关在 API 风格之间切换。 声明响应式状态​ ref()​ 在组合式 API 中,推荐使用 ref() 函数来声明…...

DeepSeek-OpenSourceWeek-第四天-Optimized Parallelism Strategies

DeepSeek 在 #OpenSourceWeek(开源周) 的第四天推出了两项新工具,旨在让深度学习更快、更高效:**DualPipe** 和 **EPLB**。 DualPipe 定义:DualPipe 是一种用于 V3/R1 训练中计算与通信重叠的双向pipline并行算法。 作用:它通过实现前向和后向计算-通信阶段的完全重叠,减…...

深入浅出:插入排序算法完全解析

1. 什么是插入排序? 插入排序(Insertion Sort)是一种简单的排序算法,其基本思想与我们整理扑克牌的方式非常相似。我们将扑克牌从第二张开始依次与前面已排序的牌进行比较,将其插入到合适的位置,直到所有牌…...

【Keras图像处理入门:图像加载与预处理全解析】

本文将全面讲解如何使用Keras进行图像加载、预处理和数据增强,为深度学习模型准备高质量的图像数据。 一、单张图像处理基础 1. 图像加载与尺寸调整 from keras.preprocessing import image# 加载图像并调整尺寸 img image.load_img(example.jpg, target_size(1…...

企业级AI办公落地实践:基于钉钉/飞书的标准产品解决方案

一、平台化AI的崛起:开箱即用的智能革命 2024年企业AI应用调研数据显示: 73%的中型企业选择平台标准产品而非自研头部SaaS平台AI功能渗透率达89%典型ROI周期从18个月缩短至3-6个月 核心优势对比: 维度自研方案平台标准产品部署周期6-12个…...

对于邮箱地址而言,短中划线(Hyphen, -)和长中划线(Em dash, —)有区别吗

对于邮箱地址而言,**短中划线(Hyphen, -)和长中划线(Em dash, —)**有明确的区别: 短中划线(Hyphen, -): 在邮箱地址中,短中划线是可以使用的,通常…...

C++ STL(三)list

目录 list是什么 构造函数 元素访问 容量操作 修改 迭代器 code实例 实现简单的list forward_list是什么 构造函数 元素访问 容量 修改 迭代器 code实例 实现一个简单的forward_list list是什么 std::list 是 C 标准模板库(STL)中的一个…...

Vue3+TypeScript 封装一个好用的防抖节流自定义指令

一、前言:为什么需要防抖节流? 在前端开发中,高频触发的事件(如滚动、输入、点击等)容易导致性能问题。防抖(debounce) 和 节流(throttle) 是两种常用的优化手段&#x…...

HarmonyOS+Django实现图片上传

话不多说,直接看代码: HarmonyOS部分代码 import { router } from "kit.ArkUI" import PreferencesUtil from "../utils/PreferencesUtil" import { photoAccessHelper } from "kit.MediaLibraryKit" import fs from oh…...

vscode 版本

vscode官网 Visual Studio Code - Code Editing. Redefined 但是官网只提供最新 在之前的版本就要去github找了 https://github.com/microsoft/vscode/releases 获取旧版本vscode安装包的方法_vscode 老版本-CSDN博客...

Python 爬虫实战案例 - 获取拉勾网招聘职位信息

引言 拉勾网,作为互联网招聘领域的佼佼者,汇聚了海量且多样的职位招聘信息。这些信息涵盖了从新兴科技领域到传统行业转型所需的各类岗位,无论是初出茅庐的应届生,还是经验丰富的职场老手,都能在其中探寻到机遇。 对…...

结构型模式---外观模式

概念 外观模式是一种结构型设计模式,它的核心思想是为复杂的子系统提供一个统一的接口,简化客户端与子系统的交互。外观模式通过引入一个高层接口,隐藏子系统的复杂性,使客户端更容易使用。 适用场景 用于客户端无需具体操作子…...

Docker数据卷操作实战

什么是数据卷 数据卷 是一个可供一个或多个容器使用的特殊目录,它绕过 UFS,可以提供很多有用的特性: 数据卷 可以在容器之间共享和享用对 数据卷 的修改立马生效对 数据卷 的更新,不会影响镜像数据卷 默认会一直存在,即时容器被…...

技术速递|Copilot Usage Advanced Dashboard 教程

作者:Xuefeng Yin 排版:Alan Wang Copilot Usage Advanced Dashboard 是为了充分利用 GitHub Copilot API 中的几乎所有数据,用到的 API 有: List teams of an onganization Get a summary of Copilot metrics for a team Get C…...

【Python爬虫(90)】以Python爬虫为眼,洞察金融科技监管风云

【Python爬虫】专栏简介:本专栏是 Python 爬虫领域的集大成之作,共 100 章节。从 Python 基础语法、爬虫入门知识讲起,深入探讨反爬虫、多线程、分布式等进阶技术。以大量实例为支撑,覆盖网页、图片、音频等各类数据爬取,还涉及数据处理与分析。无论是新手小白还是进阶开发…...

Shell学习(1/6) 教程-变量

一、教程 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁。Shell 既是一种命令语言,又是一种程序设计语言。 Shell 是指一种应用程序,这个应用程序提供了一个界面,用户通过这个界面访问操作系统内核的服务。 Shell…...

《Qt窗口动画实战:Qt实现呼吸灯效果》

Qt窗口动画实战:Qt实现呼吸灯效果 在嵌入式设备或桌面应用中,呼吸灯效果是一种常见且优雅的UI动画,常用于指示系统状态或吸引用户注意。本文将介绍如何使用Qt动画框架实现平滑的呼吸灯效果。 一、实现原理 利用Qt自带的动画框架来实现&…...

RabbitMQ系列(六)基本概念之Routing Key

在 RabbitMQ 中,Routing Key(路由键) 是用于将消息从交换机(Exchange)路由到指定队列(Queue)的关键参数。其核心作用是通过特定规则匹配绑定关系,确保消息被正确分发。以下是其核心机…...

Spring Boot 集成 Kafka

在现代软件开发中,分布式系统和微服务架构越来越受到关注。为了实现系统之间的异步通信和解耦,消息队列成为了一种重要的技术手段。Kafka 作为一种高性能、分布式的消息队列系统,被广泛应用于各种场景。而 Spring Boot 作为一种流行的 Java 开…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端

🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接:A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串,只有在同时为 o 时输出 Yes 并结束程序,否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

JVM垃圾回收机制全解析

Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...

P3 QT项目----记事本(3.8)

3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

蓝桥杯 冶炼金属

原题目链接 &#x1f527; 冶炼金属转换率推测题解 &#x1f4dc; 原题描述 小蓝有一个神奇的炉子用于将普通金属 O O O 冶炼成为一种特殊金属 X X X。这个炉子有一个属性叫转换率 V V V&#xff0c;是一个正整数&#xff0c;表示每 V V V 个普通金属 O O O 可以冶炼出 …...

【分享】推荐一些办公小工具

1、PDF 在线转换 https://smallpdf.com/cn/pdf-tools 推荐理由&#xff1a;大部分的转换软件需要收费&#xff0c;要么功能不齐全&#xff0c;而开会员又用不了几次浪费钱&#xff0c;借用别人的又不安全。 这个网站它不需要登录或下载安装。而且提供的免费功能就能满足日常…...

Go语言多线程问题

打印零与奇偶数&#xff08;leetcode 1116&#xff09; 方法1&#xff1a;使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...