当前位置: 首页 > news >正文

从二维随机变量到多维随机变量

二维随机变量

X X X Y Y Y是定义在同一样本空间 Ω \varOmega Ω上的两个随机变量,称由它们组成的向量 ( X , Y ) (X, Y) (X,Y)为二维随机变量,亦称为二维随机向量,其中称 X X X Y Y Y是二维随机变量的分量。

采用多个随机变量去描述一个随机现象,所以定义中的随机变量 X X X Y Y Y是要求定义在同一个样本空间上。相对于二维随机变量 ( X , Y ) (X, Y) (X,Y),也称 X X X Y Y Y是一维随机变量。

若随机变量 X X X Y Y Y之间存在相互关系,则需要将 ( X , Y ) (X, Y) (X,Y)作为一个整体(向量)来进行研究。通过将两个随机变量 X X X Y Y Y组合成一个二维随机变量 ( X , Y ) (X, Y) (X,Y),可以更全面地描述和分析随机现象。

二维离散随机变量

若二维随机变量 ( X , Y ) (X, Y) (X,Y)的取值只有有限多对或可列无穷多对,则称 ( X , Y ) (X, Y) (X,Y)为二维离散随机变量。

二维离散随机变量及其联合分布律

设二维离散随机变量 ( X , Y ) (X, Y) (X,Y)所有可能取到的不同值为 ( x i , y j ) (x_i, y_j) (xi,yj) i , j = 1 , 2 , … i, j = 1, 2, \ldots i,j=1,2,,称

p i j = p ( x i , y j ) = P ( X = x i , Y = y j ) p_{ij} = p(x_i, y_j) = P(X = x_i, Y = y_j) pij=p(xi,yj)=P(X=xi,Y=yj)

( X , Y ) (X, Y) (X,Y)的联合概率函数或联合分布律,简称为 ( X , Y ) (X, Y) (X,Y)的概率函数或分布律。

  • 二维离散随机变量:如果二维随机变量 ( X , Y ) (X, Y) (X,Y)的取值只有有限多对或可列无穷多对,则称其为二维离散随机变量。
  • 联合概率函数 p i j p_{ij} pij:表示随机变量 X X X取值为 x i x_i xi且随机变量 Y Y Y取值为 y j y_j yj的概率。
  • 联合分布律:所有可能的 ( x i , y j ) (x_i, y_j) (xi,yj)对应的概率 p i j p_{ij} pij构成了二维离散随机变量 ( X , Y ) (X, Y) (X,Y)的联合分布律。

设随机变量 X X X可以取值 x 1 , x 2 , … , x m x_1, x_2, \ldots, x_m x1,x2,,xm,而随机变量 Y Y Y可以取值 y 1 , y 2 , … , y n y_1, y_2, \ldots, y_n y1,y2,,yn。那么, X X X Y Y Y的联合分布律可以通过以下方式表示:

( X , Y ) (X, Y) (X,Y) Y = y 1 Y = y_1 Y=y1 Y = y 2 Y = y_2 Y=y2 ⋯ \cdots Y = y j Y = y_j Y=yj ⋯ \cdots Y = y n Y = y_n Y=yn
X = x 1 X = x_1 X=x1 p 11 p_{11} p11 p 12 p_{12} p12 ⋯ \cdots p 1 j p_{1j} p1j ⋯ \cdots p 1 n p_{1n} p1n
X = x 2 X = x_2 X=x2 p 21 p_{21} p21 p 22 p_{22} p22 ⋯ \cdots p 2 j p_{2j} p2j ⋯ \cdots p 2 n p_{2n} p2n
⋮ \vdots ⋮ \vdots ⋮ \vdots ⋱ \ddots ⋮ \vdots ⋱ \ddots ⋮ \vdots
X = x i X = x_i X=xi p i 1 p_{i1} pi1 p i 2 p_{i2} pi2 ⋯ \cdots p i j p_{ij} pij ⋯ \cdots p i n p_{in} pin
⋮ \vdots ⋮ \vdots ⋮ \vdots ⋱ \ddots ⋮ \vdots ⋱ \ddots ⋮ \vdots
X = x m X = x_m X=xm p m 1 p_{m1} pm1 p m 2 p_{m2} pm2 ⋯ \cdots p m j p_{mj} pmj ⋯ \cdots p m n p_{mn} pmn

在这个表中:

  • 每个元素 p i j p_{ij} pij表示 X = x i X = x_i X=xi Y = y j Y = y_j Y=yj同时发生的概率。
  • 所有 p i j p_{ij} pij值加起来等于 1,因为它们代表了所有可能事件的概率总和。

二维连续型随机变量及其联合概率密度函数

( X , Y ) (X, Y) (X,Y)是二维随机变量, F ( x , y ) F(x, y) F(x,y)是其联合分布函数。若存在非负二元函数 p ( x , y ) p(x, y) p(x,y),使得对于任意的实数 x x x y y y,有

F ( x , y ) = ∫ − ∞ x ∫ − ∞ y f ( u , v ) d u d v , F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \, {\rm d}u \, {\rm d}v, F(x,y)=xyf(u,v)dudv,

则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机变量,称 p ( x , y ) p(x, y) p(x,y) ( X , Y ) (X, Y) (X,Y)的联合概率密度函数,简称为概率密度。

  • 联合分布函数 F ( x , y ) F(x, y) F(x,y)描述了随机变量 X X X Y Y Y同时小于等于 x x x y y y的概率。
  • 联合概率密度函数 p ( x , y ) p(x, y) p(x,y)是一个非负二元函数,通过积分可以得到联合分布函数 F ( x , y ) F(x, y) F(x,y)
  • 二维连续型随机变量:如果存在这样的联合概率密度函数 p ( x , y ) p(x, y) p(x,y),则称 ( X , Y ) (X, Y) (X,Y)为二维连续型随机变量。

在这里插入图片描述
在这里插入图片描述

n n n维随机变量

X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn是定义在同一样本空间 Ω \varOmega Ω上的 n n n个随机变量,称由它们组成的向量 ( X 1 , X 2 , … , X n ) (X_1, X_2, \ldots, X_n) (X1,X2,,Xn) n n n维随机变量,亦称为 n n n维随机向量,其中称 X i X_i Xi 1 ≤ i ≤ n 1 \leq i \leq n 1in)是 n n n维随机向量的第 i i i个分量。

  • n n n维随机变量:由 n n n个随机变量 X 1 , X 2 , … , X n X_1, X_2, \ldots, X_n X1,X2,,Xn组成的向量。
  • n n n维随机向量:与 n n n维随机变量同义,表示一个包含 n n n个随机变量的向量。
  • 分量:每个随机变量 X i X_i Xi 1 ≤ i ≤ n 1 \leq i \leq n 1in)是 n n n维随机向量的一个组成部分。

相关文章:

从二维随机变量到多维随机变量

二维随机变量 设 X X X和 Y Y Y是定义在同一样本空间 Ω \varOmega Ω上的两个随机变量,称由它们组成的向量 ( X , Y ) (X, Y) (X,Y)为二维随机变量,亦称为二维随机向量,其中称 X X X和 Y Y Y是二维随机变量的分量。 采用多个随机变量去描述…...

Vulnhub靶场 Kioptrix: Level 1.3 (#4) 练习

目录 0x00 环境准备0x01 主机信息收集0x02 站点信息收集0x03 漏洞查找与利用0x04 总结 0x00 环境准备 下载:https://download.vulnhub.com/kioptrix/Kioptrix4_vmware.rar 解压后得到的是vmdk文件。在vm中新建虚拟机,稍后安装操作系统,系统选…...

权重生成图像

简介 前面提到的许多生成模型都有保存了生成器的权重,本章主要介绍如何使用训练好的权重文件通过生成器生成图像。 但是如何使用权重生成图像呢? 一、参数配置 ima_size 为图像尺寸,这个需要跟你模型训练的时候resize的时候一样。 latent_dim为噪声维度,一般的设置都是…...

实时时钟(RTC)/日历芯片PCF8563的I2C读写驱动(2):功能介绍

0 参考资料 PCF8563数据手册(第 11 版——2015 年 10 月 26 日).pdf 1 功能介绍 1.1 实时时钟(RTC)/日历 (1)PCF8563支持实时时钟(RTC),提供时、分、秒信息。对应寄存器…...

猿大师播放器:HTML内嵌VLC播放RTSP视频流,无需转码,300ms级延迟,碾压服务器转码方案

在智慧城市、工业安全、应急指挥等关键领域,实时视频监控已成为守护生命与财产的核心防线‌。然而,行业普遍面临三大矛盾: ‌实时性要求与高延迟矛盾‌:火灾蔓延速度达1米/秒,化工泄漏扩散仅需数秒,传统方…...

牛客刷题自留-深度学习

1、当在卷积神经网络中加入池化层(pooling layer)时,平移变换的不变性会被保留,是吗? 正常答案: C A 不知道 B 看情况 C 是 D 否 平移变换不变性的概念 平移变换不变性指的是当输入图像发生小范围的平移时,模型的输出结果不会发…...

AI 时代下,操作系统如何进化与重构?

AI 时代下,操作系统如何进化与重构? AI时代服务器操作系统技术挑战2024 龙蜥操作系统大会最关注的是哪些议题分享与讨论?对于操作系统未来的发展趋势,有哪些观察和建议 2024 龙蜥操作系统大会(OpenAnolis Conference&a…...

Hadoop最新版本hadoop-3.4.1搭建伪分布式集群以及相关报错解决

一:概述 Hadoop 是一个开源的分布式计算框架,广泛应用于大数据处理。伪分布式集群是 Hadoop 的一种部署模式,它可以在单台机器上模拟集群环境,适合初学者进行学习和实验。本文将详细介绍如何在单台机器上搭建 Hadoop 3.4.1 的伪分…...

Android SDK与NDK的区别

Android SDK(Software Development Kit)与NDK(Native Development Kit)在Android应用开发中各自扮演着重要角色,它们之间存在显著的区别。以下是Android SDK与NDK的主要区别: 一、定义与用途 Android SDK…...

【保姆级视频教程(二)】YOLOv12训练数据集构建:标签格式转换-划分-YAML 配置 避坑指南 | 小白也能轻松玩转目标检测!

【2025全站首发】YOLOv12训练数据集构建:标签格式转换-划分-YAML 配置 避坑指南 | 小白也能轻松玩转目标检测! 文章目录 1. 数据集准备1.1 标签格式转换1.2 数据集划分1.3 yaml配置文件创建 2. 训练验证 1. 数据集准备 示例数据集下载链接:P…...

smolagents学习笔记系列(八)Examples - Master you knowledge base with agentic RAG

这篇文章锁定官网教程中 Examples 章节中的 Master you knowledge base with agentic RAG 文章,主要介绍了如何将 agent 和 RAG 结合使用。 官网链接:https://huggingface.co/docs/smolagents/v1.9.2/en/examples/rag; Agentic RAG 在之前的…...

满血版DeepSeek R1使用体验

硅基流动的满血版DeepSeek,通过CheeryStudio可以轻松访问,告别DeepSeek官网服务器繁忙,https://cloud.siliconflow.cn/i/ewlWR6A9 即可注册 https://cloud.siliconflow.cn/i/ewlWR6A9https://cloud.siliconflow.cn/i/ewlWR6A9 一、硅基流动平…...

Java类中的this操作

在Java中,`this` 是一个关键字,用于引用当前对象的实例。它通常在类的方法或构造器中使用,主要有以下几种用途: 1. 区分成员变量和局部变量 当成员变量与局部变量同名时,使用 `this` 可以明确引用当前对象的成员变量。 public class Person { private String name; …...

LeetCode刷题---双指针---532

数组中的 k-diff 数对 532. 数组中的 k-diff 数对 - 力扣(LeetCode) 题目 给你一个整数数组 nums 和一个整数 k,请你在数组中找出 不同的 k-diff 数对,并返回不同的 k-diff 数对 的数目。 k-diff 数对定义为一个整数对 (nums[…...

cpp单调栈模板

题目如下 如果利用暴力解法,时间复杂度是O(n^2) 只能过60%的数据 AC解法: 利用单调栈的算法,单调栈里存的是之前遍历过的元素的下标,如果满足while的条件就将栈顶元素记录,然后将其弹出&#x…...

PyCharm 的使用 + PyCharm快捷键 + 切换中文界面

2025 - 02 - 27 - 第 62 篇 Author: 郑龙浩 / 仟濹 【PyCharm的使用】 文章目录 如何使用Pycharm1 新建工程,新建 .py 文件,运行2 常用快捷键3 其他快捷键 - DeepSeek 总结如下**代码编辑****导航与定位****查找与替换****运行与调试****代码重构****其…...

SSL/TLS 协议、SSL证书 和 SSH协议 的区别和联系

下面是 SSL/TLS 协议、SSL证书 和 SSH协议 的区别和联系,包含它们的英文全称和中文全称: 属性SSL/TLS 协议SSL证书SSH 协议英文全称Secure Sockets Layer / Transport Layer SecuritySecure Sockets Layer CertificateSecure Shell Protocol中文全称安全…...

一个典型的要求: Python | C#实现年月日创建文件夹 时分秒对应文件名的保存路径

赶时间先说python: 用年月日作为文件夹: 年月日 时分秒 保存文件的路径根据年月日 创建文件夹 年里面包含月 月里面包含日 检查是否存在 没有就去创建 最后文件名用 时分秒毫秒.txt 这是一个典型的要求: import os from datetime import datetimenow datetime.now()# 获取当…...

知识库功能测试难点

图表交互功能测试难点 知识库图表类型多,每种图表交互功能不同。像柱状图,可能有点击柱子查看详细数据、鼠标悬停显示数据提示等交互;折线图除了这些,还可能支持缩放查看不同时间段数据。多种交互操作在不同图表间存在差异&#x…...

如何实现某短视频平台批量作品ID的作品详情采集

声明: 本文仅供学习交流使用,请勿用于非法用途。 在短视频平台的数据分析和内容监测中,批量采集作品详情是一个常见的需求。本文将介绍如何使用 Python 编写一个高效的爬虫程序,根据批量作品 ID 实现作品详情的批量采集。 1. 需求分析 输入:一批作品 ID。输出:每个作品 …...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

XCTF-web-easyupload

试了试php,php7,pht,phtml等,都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接,得到flag...

PHP和Node.js哪个更爽?

先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)

目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...

学习STC51单片机31(芯片为STC89C52RCRC)OLED显示屏1

每日一言 生活的美好,总是藏在那些你咬牙坚持的日子里。 硬件:OLED 以后要用到OLED的时候找到这个文件 OLED的设备地址 SSD1306"SSD" 是品牌缩写,"1306" 是产品编号。 驱动 OLED 屏幕的 IIC 总线数据传输格式 示意图 …...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

相机从app启动流程

一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

基于Docker Compose部署Java微服务项目

一. 创建根项目 根项目&#xff08;父项目&#xff09;主要用于依赖管理 一些需要注意的点&#xff1a; 打包方式需要为 pom<modules>里需要注册子模块不要引入maven的打包插件&#xff0c;否则打包时会出问题 <?xml version"1.0" encoding"UTF-8…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

如何在网页里填写 PDF 表格?

有时候&#xff0c;你可能希望用户能在你的网站上填写 PDF 表单。然而&#xff0c;这件事并不简单&#xff0c;因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件&#xff0c;但原生并不支持编辑或填写它们。更糟的是&#xff0c;如果你想收集表单数据&#xff…...