Imagination通过最新的D系列GPU IP将效率提升至新高度
Imagination DXTP GPU IP在加速移动设备和其他电力受限设备上的图形和计算工作负载时,能够延长电池续航时间。
英国伦敦 – 2025年2月25日 – 今日,Imagination Technologies(“Imagination”)宣布推出其最新的GPU IP——Imagination DXTP,该产品为智能手机和其他电力受限设备上图形和计算工作负载的高效加速设定了新的标准。得益于一系列微架构改进,DXTP在常见图形工作负载上,相比其前代产品DXT,功耗效率(FPS/W)提高了最多20%。
“全球智能手机市场正在复苏,推动力来自于尖端的AI功能,如个人助手和增强摄影,”Counterpoint
Research的合伙人兼副总裁Peter
Richardson表示。“然而,这场由AI驱动的革命的成功,依赖于保持用户期望的高标准:流畅的界面、精致的设计和全天候的电池续航。随着市场的成熟,消费者更倾向于选择能够无缝整合这些先进AI功能且不妥协手机基本性能的高端设备。”
DXTP提供高达64 GPixel/s的图形处理能力,2 TFLOPS的FP32性能和8 TOPS的INT8 AI性能,采用超并行计算引擎,工作频率为1GHz。DXTP提供两种现成的配置,且已获得在移动和汽车领域的授权使用。除了性能和效率优化,DXTP还具有高度灵活性,支持完全安全的GPU多任务处理(通过Imagination低开销的硬件虚拟化技术),能够同时运行图形和计算任务。
DXTP由Imagination成熟的软件生态系统和屡获殊荣的SDK及工具提供支持。它配备了高度优化的OpenCL™计算库,能够提高GPU在常见AI任务中的利用率,同时提供oneAPI和TensorGraph的参考套件,加速现有代码在Imagination硬件上的移植。优化的LiteRT支持将为Imagination GPU在Android™平台上的高性能AI提供支持。应用开发者还可以使用PowerVR开发者工具进行底层性能分析、调试、追踪捕获,并通过Imagination开发者论坛获得专家支持。
“Imagination
DXTP是许多小步伐带来大进步的真实例证,也是Imagination工程团队聪明才智的体现,”Imagination首席产品官James
Chapman表示。“DXTP内一系列性能和效率的改进将使未来的智能手机能够以比以往更低的功耗运行下一波游戏和AI应用。”
DXTP是Imagination D系列GPU家族的最终产品,D系列还包括面向桌面市场的高性能IMG DXD(支持DirectX FL11_0)和面向安全关键汽车市场的创新IMG DXS。
了解更多DXTP GPU的产品信息。
相关文章:
Imagination通过最新的D系列GPU IP将效率提升至新高度
Imagination DXTP GPU IP在加速移动设备和其他电力受限设备上的图形和计算工作负载时,能够延长电池续航时间。 英国伦敦 – 2025年2月25日 – 今日,Imagination Technologies(“Imagination”)宣布推出其最新的GPU IP——Imagina…...
C高级——shell(3)
一、shell的选择结构 1.回顾:C语言的选择结构:if , if else if ,if else,switch (switch的执行速度最快) 2.shell的选择结构: 单分支if 双分支 if else 多分支if elif case..in 1.1 shell的选择结构的格式 --------C语言的格式--…...
【C语言】第八期——指针、二维数组与字符串
目录 1 初始指针 2 获取变量的地址 3 定义指针变量、取地址、取值 3.1 定义指针变量 3.2 取地址、取值 4 对指针变量进行读写操作 5 指针变量作为函数参数 6 数组与指针 6.1 指针元素指向数组 6.2 指针加减运算(了解) 6.2.1 指针加减具体数字…...
docker 运行claude 的computer use
需要注意的是:这里claude操纵的是docker的虚拟服务器,不能访问本地url,需要进行端口转发 export ANTHROPIC_API_KEY%your_api_key% docker run \-e ANTHROPIC_API_KEY$ANTHROPIC_API_KEY \-v $HOME/.anthropic:/home/computeruse/.anthropi…...
JAVA面试_进阶部分_23种设计模式总结
1. 单例模式:确保某一个类只有一个实例,而且自行实例化并向整个系统提供这 个实例。 (1)懒汉式 public class Singleton { /* 持有私有静态实例,防止被引用,此处赋值为null,目的是实现延迟加载…...
边缘计算收益低的三大指标
边缘计算收益低的三大指标主要包括以下方面: 1. 资源贡献不足: 边缘计算的收益通常基于所提供的带宽、存储和计算资源来计算。如果设备的网络带宽有限、在线时间短或提供的存储容量较小,可能无法满足平台设定的最低贡献标准,从而导…...
Linux网络之传输层协议(UDP,TCP协议)
目录 重新认识端口号 端口号划分 netstat pidof UDP协议 UDP的特点 面向数据报 UDP的缓冲区 全双工和半双工 TCP协议 TCP的特点 TCP报头分析 源端口,目标端口,数据偏移(报文首部长度) 序号 确认号 窗口 6个标志位 ACK SYN …...
傅里叶分析
傅里叶分析之掐死教程(完整版)更新于2014.06.06 要让读者在不看任何数学公式的情况下理解傅里叶分析。 傅里叶分析不仅仅是一个数学工具,更是一种可以彻底颠覆一个人以前世界观的思维模式。但不幸的是,傅里叶分析的公式看起来太复…...
【前端基础】Day 3 CSS-2
目录 1. Emmet语法 1.1 快速生成HTML结构语法 1.2 快速生成CSS样式语法 2. CSS的复合选择器 2.1 后代选择器 2.2 子选择器 2.3 并集选择器 2.4 伪类选择器 2.4.1 链接伪类选择器 2.4.2 focus伪类选择器 2.5 复合选择器总结 3. CSS的元素显示模式 3.1 什么是元素显示…...
NAT 技术:网络中的 “地址魔术师”
目录 一、性能瓶颈:NAT 的 “阿喀琉斯之踵” (一)数据包处理延迟 (二)高并发下的性能损耗 二、应用兼容性:NAT 带来的 “适配难题” (一)端到端通信的困境 (二&…...
Ollama下载安装+本地部署DeepSeek+UI可视化+搭建个人知识库——详解!(Windows版本)
目录 1️⃣下载和安装Ollama 1. 🥇官网下载安装包 2. 🥈安装Ollama 3.🥉配置Ollama环境变量 4、🎉验证Ollama 2️⃣本地部署DeepSeek 1. 选择模型并下载 2. 验证和使用DeepSeek 3️⃣使用可视化工具 1. Chrome插件-Page …...
【JavaSE-1】初识Java
1、Java 是什么? Java 是一种优秀的程序设计语言,人类和计算机之间的交流可以借助 Java 这种语言来进行交流,就像人与人之间可以用中文、英语,日语等进行交流一样。 Java 和 JavaScript 两者有关系吗? 一点都没有关系!!! 前端内容:HTML CSS JS,称为网页三剑客 2、JDK 下…...
《基于Django和ElasticSearch的学术论文搜索推荐系统的设计与实现》开题报告
目录 一、选题的背景和意义 (一)选题背景 (二)选题意义 2.1.提升科研效率 2.2 促进学术创新 2.3优化资源配置 二、选题的国内外现状与总结 (一)国内现状 (二)国外现状 &am…...
Dify在Ubuntu20.04系统的部署
文章目录 一、dify 介绍1.核心功能优势2.应用场景 二、dify 安装(docker方式)1.代码库下载2.配置文件修改3.启动docker 容器 三、遇到问题与解决1.使用sudo docker compose up -d报错2.使用service docker start报错 一、dify 介绍 Dify 是一款开源的大语言模型(LL…...
第7天:结构体与联合体 - 复杂数据类型
第7天:结构体与联合体 - 复杂数据类型 一、📚 今日学习目标 🎯 掌握结构体(struct)的定义与使用🔧 理解联合体(union)的特性与适用场景💡 完成图书馆管理系统实战&…...
vue富文本 vue-quill-editor + 上传图片到阿里云服务器 + 修改富文本内容
前言 使用富文本编辑器,需要将图片上传到服务器,完成之后,还需要在修改页面完成修改富文本内容,使用的富文本插件是vue-quill-editor, 一 、安装 vue-quill-editor npm i vue-quill-editor npm install quill --save npm inst…...
Java常见设计模式(中):结构型模式
🌈 引言:设计模式就像乐高积木 适配器:让不同形状的积木完美拼接装饰器:给积木添加炫酷灯光效果代理:遥控积木完成复杂动作组合:将小积木搭建成宏伟城堡 结构型模式 主要用于描述对象之间的关系ÿ…...
DeepSeek R1 + 飞书机器人实现AI智能助手
效果 TFChat项目地址 https://github.com/fish2018/TFChat 腾讯大模型知识引擎用的是DeepSeek R1,项目为sanic和redis实现,利用httpx异步处理流式响应,同时使用buffer来避免频繁调用飞书接口更新卡片的网络耗时。为了进一步减少网络IO消耗&…...
【论文详解】Transformer 论文《Attention Is All You Need》能够并行计算的原因
文章目录 前言一、传统 RNN/CNN 存在的串行计算问题二、Transformer 如何实现并行计算?三、Transformer 的 Encoder 和 Decoder 如何并行四、结论 前言 亲爱的家人们,创作很不容易,若对您有帮助的话,请点赞收藏加关注哦ÿ…...
51c嵌入式~电路~合集12
我自己的原文哦~ https://blog.51cto.com/whaosoft/12318429 一、单端、推挽、桥式拓扑结构变压器对比 单端正激式 单端:通过一只开关器件单向驱动脉冲变压器。 正激:脉冲变压器的原/付边相位关系,确保在开关管导通,驱动脉冲…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件
在选煤厂、化工厂、钢铁厂等过程生产型企业,其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进,需提前预防假检、错检、漏检,推动智慧生产运维系统数据的流动和现场赋能应用。同时,…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
return this;返回的是谁
一个审批系统的示例来演示责任链模式的实现。假设公司需要处理不同金额的采购申请,不同级别的经理有不同的审批权限: // 抽象处理者:审批者 abstract class Approver {protected Approver successor; // 下一个处理者// 设置下一个处理者pub…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
