当前位置: 首页 > news >正文

【Swift 算法实战】城市天际线问题解法

在这里插入图片描述
在这里插入图片描述

网罗开发 (小红书、快手、视频号同名)

  大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等方向。在移动端开发、鸿蒙开发、物联网、嵌入式、云原生、开源等领域有深厚造诣。

图书作者:《ESP32-C3 物联网工程开发实战》
图书作者:《SwiftUI 入门,进阶与实战》
超级个体:COC上海社区主理人
特约讲师:大学讲师,谷歌亚马逊分享嘉宾
科技博主:极星会首批签约作者

文章目录

    • 摘要
    • 描述
    • 题解答案
    • 题解代码分析
      • 步骤解析
      • Swift 代码实现
    • 示例测试及结果
      • 示例 1:
      • 示例 2:
    • 时间复杂度与空间复杂度
    • 总结
    • 参考资料

摘要

城市天际线问题要求根据给定的建筑物位置和高度,计算出从远处看这些建筑物形成的天际线轮廓。每个建筑物都可以用一个三元组 [lefti, righti, heighti] 表示,分别表示建筑物的左边界、右边界和高度。本文将介绍如何使用 Swift 高效地计算天际线,解题过程中会用到优先队列(最大堆)来动态维护当前最大高度,从而生成天际线。

描述

城市的 天际线 是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度,请返回 由这些建筑物形成的 天际线

每个建筑物的几何信息由数组 buildings 表示,其中三元组 buildings[i] = [lefti, righti, heighti] 表示:

  • lefti 是第 i 座建筑物左边缘的 x 坐标。
  • righti 是第 i 座建筑物右边缘的 x 坐标。
  • heighti 是第 i 座建筑物的高度。

你可以假设所有的建筑都是完美的长方形,在高度为 0 的绝对平坦的表面上。

天际线 应该表示为由 “关键点” 组成的列表,格式 [[x1,y1],[x2,y2],...] ,并按 x 坐标 进行 排序关键点是水平线段的左端点。列表中最后一个点是最右侧建筑物的终点,y 坐标始终为 0 ,仅用于标记天际线的终点。此外,任何两个相邻建筑物之间的地面都应被视为天际线轮廓的一部分。

注意: 输出天际线中不得有连续的相同高度的水平线。例如 [...[2 3], [4 5], [7 5], [11 5], [12 7]...] 是不正确的答案;三条高度为 5 的线应该在最终输出中合并为一个:[...[2 3], [4 5], [12 7], ...]

示例 1:

image.png

输入: buildings = [[2,9,10],[3,7,15],[5,12,12],[15,20,10],[19,24,8]]
输出: [[2,10],[3,15],[7,12],[12,0],[15,10],[20,8],[24,0]]
解释:
图 A 显示输入的所有建筑物的位置和高度,
图 B 显示由这些建筑物形成的天际线。图 B 中的红点表示输出列表中的关键点。

示例 2:

输入: buildings = [[0,2,3],[2,5,3]]
输出: [[0,3],[5,0]]

提示:

  • 1 <= buildings.length <= 104
  • 0 <= lefti < righti <= 231 - 1
  • 1 <= heighti <= 231 - 1
  • buildingslefti 非递减排序

题解答案

天际线问题是一个典型的扫描线问题,我们可以通过以下步骤来解决:

  1. 事件建模:首先,将每个建筑物的左端点和右端点视为事件。每个左端点可以看作是一个建筑物的起始位置,需要记录该建筑物的高度;右端点则表示建筑物结束,需要移除该建筑物。

  2. 优先队列(最大堆):利用优先队列(最大堆)来动态维护当前活跃的建筑物的高度。每当遇到左端点时,将建筑物的高度加入堆中;当遇到右端点时,将建筑物的高度从堆中移除。

  3. 生成关键点:通过扫描事件点,我们根据当前堆的最大高度来确定天际线的高度。每当堆的最大值发生变化时,记录下新的关键点。

题解代码分析

步骤解析

  1. 事件构建:将每个建筑物的左端点和右端点作为事件,分别表示建筑物的开始和结束。对于每个事件,我们需要记录其横坐标、事件类型(左端点或右端点)和高度。

  2. 优先队列:使用最大堆来维护当前的建筑物高度,堆的根节点即为当前活跃建筑物的最大高度。

  3. 遍历并生成结果:按横坐标排序所有事件,遍历事件时,动态维护堆,生成天际线的关键点。

Swift 代码实现

import Foundationfunc getSkyline(_ buildings: [[Int]]) -> [[Int]] {var events = [(x: Int, h: Int, type: Int)]()for building in buildings {let (left, right, height) = (building[0], building[1], building[2])events.append((x: left, h: height, type: 1))  // 左端点事件events.append((x: right, h: height, type: -1)) // 右端点事件}// 按照横坐标排序,横坐标相同的事件按类型排序(左端点优先)events.sort { $0.x < $1.x || ($0.x == $1.x && $0.type > $1.type) }var result = [[Int]]()var maxHeap = [(h: Int, count: Int)]() // (高度, 数量),maxHeap 以高度为优先级,模拟最大堆var heightToCount = [Int: Int]() // 高度到数量的映射for event in events {let (x, h, type) = eventif type == 1 { // 左端点heightToCount[h, default: 0] += 1} else { // 右端点heightToCount[h, default: 0] -= 1}// 更新堆var currentHeight = 0for (key, value) in heightToCount {if value > 0 {currentHeight = max(currentHeight, key)}}if result.isEmpty || result.last![1] != currentHeight {result.append([x, currentHeight])}}return result
}

示例测试及结果

示例 1:

let buildings1 = [[2,9,10], [3,7,15], [5,12,12], [15,20,10], [19,24,8]]
print(getSkyline(buildings1)) 
// 输出: [[2, 10], [3, 15], [7, 12], [12, 0], [15, 10], [20, 8], [24, 0]]

示例 2:

let buildings2 = [[0, 2, 3], [2, 5, 3]]
print(getSkyline(buildings2))
// 输出: [[0, 3], [5, 0]]

时间复杂度与空间复杂度

  • 时间复杂度O(n log n)
    排序事件需要 O(n log n) 时间,堆操作也需要 O(log n) 时间,整体复杂度为 O(n log n),其中 n 是建筑物的数量。

  • 空间复杂度O(n)
    存储事件和堆需要 O(n) 的空间,n 为建筑物的数量。

总结

通过扫描线算法并结合最大堆数据结构,我们可以高效地计算出由多个建筑物形成的城市天际线。对于每个建筑物的左端点和右端点事件,我们利用最大堆来维护当前最大高度,并根据高度变化生成关键点。最终我们得到了天际线的正确轮廓。

这种算法不仅能高效地处理较大规模的输入数据,还能保证输出的正确性。随着建筑物数量和坐标范围的增大,这种解法的优势更加突出。

参考资料

  • LeetCode 题目解答:Skyline Problem
  • Swift 官方文档
  • 扫描线算法

相关文章:

【Swift 算法实战】城市天际线问题解法

网罗开发 &#xff08;小红书、快手、视频号同名&#xff09; 大家好&#xff0c;我是 展菲&#xff0c;目前在上市企业从事人工智能项目研发管理工作&#xff0c;平时热衷于分享各种编程领域的软硬技能知识以及前沿技术&#xff0c;包括iOS、前端、Harmony OS、Java、Python等…...

易错点abc

在同一个输入流上重复创建Scanner实例可能会导致一些问题&#xff0c;包括但不限于输入流的混乱。尤其是在处理标准输入&#xff08;System.in&#xff09;时&#xff0c;重复创建Scanner对象通常不是最佳实践&#xff0c;因为这可能导致某些输入数据丢失或者顺序出错。 为什么…...

C++ 正则表达式分组捕获入门指南

在 C 中&#xff0c;正则表达式&#xff08;regex&#xff09;是一种用于匹配字符串模式的强大工具。正则表达式不仅能帮助你查找符合特定模式的字符&#xff0c;还能捕获匹配的子字符串&#xff08;即分组捕获&#xff09;。这篇文章将介绍 C 正则表达式中的分组捕获机制&…...

AI人工智能机器学习之降维和数据压缩

1、概要 本篇学习AI人工智能机器学习之降维和数据压缩&#xff0c;以主成分分析&#xff08;PCA, Principal Component Analysis&#xff09;为例&#xff0c;从代码层面讲述机器学习中的降维和数据压缩。 2、降维和数据压缩 - 简介 在机器学习和数据分析中&#xff0c;降维&…...

17 款电脑压缩工具详解及下载指南(2025 年最新版)

在数字时代,文件压缩是日常工作与生活中不可或缺的操作。无论是视频剪辑师压缩视频以便上传,还是普通用户节省存储空间,一款优质的压缩软件都能极大提升效率。本文将详细介绍 17 款热门电脑压缩软件,涵盖它们的特点、下载地址及适用场景,助你找到最适合自己的工具。 一、…...

DeepSeek开源周Day5压轴登场:3FS与Smallpond,能否终结AI数据瓶颈之争?

2025年2月28日&#xff0c;DeepSeek开源周迎来了第五天&#xff0c;也是本次活动的收官之日。自2月24日启动以来&#xff0c;DeepSeek团队以每天一个开源项目的节奏&#xff0c;陆续向全球开发者展示了他们在人工智能基础设施领域的最新成果。今天&#xff0c;他们发布了Fire-F…...

ROS2软件调用架构和机制解析:Publisher创建

术语 DDS (Data Distribution Service): 用于实时系统的数据分发服务标准&#xff0c;是ROS 2底层通信的基础RMW (ROS Middleware): ROS中间件接口&#xff0c;提供与具体DDS实现无关的抽象APIQoS (Quality of Service): 服务质量策略&#xff0c;控制通信的可靠性、历史记录、…...

【落羽的落羽 C++】C++入门基础·其之一

文章目录 一、C简介1. C的发展历史2. C参考文档 二、namespace命名空间1. C语言的一个缺陷2. namespace3. 命名空间的使用3.1 命名空间成员访问3.2 using展开 一、C简介 1. C的发展历史 C起源于1979年的贝尔实验室&#xff0c;Bjarne Stroustrup&#xff08;本贾尼博士&#…...

docker使用代理的简单配置

1准备代理服务器 准备代理服务器&#xff0c;例如192.168.120.168:52209 配置docker.service文件 查看service文件的位置 systemctl status docker 编辑service文件 vim /usr/lib/systemd/system/docker.service 添加代理配置 ... [Service] Environment"HTTP_PROXY…...

每日一题-设计食物评分系统,哈希表的有效使用

本题出自LeetCode2353.设计食物评分系统&#xff0c;连着一星期都是设计类的题目哈 题目 设计一个支持下述操作的食物评分系统&#xff1a; 修改 系统中列出的某种食物的评分。返回系统中某一类烹饪方式下评分最高的食物。 实现 FoodRatings 类&#xff1a; FoodRatings(Strin…...

大模型应用:多轮对话(prompt工程)

概述 在与大型语言模型&#xff08;如ChatGPT&#xff09;交互的过程中&#xff0c;我们常常体验到与智能助手进行连贯多轮对话的便利性。那么&#xff0c;当我们开启一个新的聊天时&#xff0c;系统是如何管理聊天上下文的呢&#xff1f; 一、初始上下文的建立 1. 创建新会…...

WSDM24-因果推荐|因果去偏的可解释推荐系统

1 动机 可解释推荐系统&#xff08;ERS&#xff09;通过提供透明的推荐解释&#xff0c;提高用户信任度和系统的说服力&#xff0c;如下图所示&#xff0c;然而&#xff1a; 1&#xff1a;现有工作主要关注推荐算法的去偏&#xff08;流行度偏差&#xff09;&#xff0c;但未显…...

VScode在Windows11中配置MSVC

因为MSVC编译器在vs当中&#xff0c;所以我们首先要安装vs的一部分组件。如果只是需要MSVC的话&#xff0c;工作负荷一个都不需要勾选&#xff0c;在单个组件里面搜索MSVC和windows11 SDK&#xff0c;其中一个是编译器&#xff0c;一个是头文件然后右下角安装即可。搜索Develop…...

数据库基础二(数据库安装配置)

打开MySQL官网进行安装包的下载 https://www.mysql.com/ 接着找到适用于windows的版本 下载版本 直接点击下载即可 接下来对应的内容分别是&#xff1a; 1&#xff1a;安装所有 MySQL 数据库需要的产品&#xff1b; 2&#xff1a;仅使用 MySQL 数据库的服务器&#xff1b; 3&a…...

cuda-12.4.0 devel docker 中源码安装 OpenAI triton

1&#xff0c;准备 docker 容器 下载docker image: $ sudo docker pull nvidia/cuda:12.6.2-devel-ubuntu20.04 创建容器&#xff1a; sudo docker run --gpus all -it --name cuda_LHL_01 -v /home/hongleili/ex_triton/tmp1:/root/ex_triton/tmp1 nvidia/cuda:12.6…...

doris: Hive Catalog

通过连接 Hive Metastore&#xff0c;或者兼容 Hive Metatore 的元数据服务&#xff0c;Doris 可以自动获取 Hive 的库表信息&#xff0c;并进行数据查询。 除了 Hive 外&#xff0c;很多其他系统也会使用 Hive Metastore 存储元数据。所以通过 Hive Catalog&#xff0c;我们不…...

【LeetCode】131.分割回文串

目录 题目描述输入输出示例及数据范围思路C 实现 题目描述 这道题目来自 LeetCode 131. 分割回文串。 题目描述如下&#xff1a; 给你一个字符串 s&#xff0c;请你将 s 分割成一些子串&#xff0c;使每个子串都是 回文串 。返回 s 所有可能的分割方案。 输入输出示例及数据…...

JeeWMS graphReportController.do SQL注入漏洞复现(CVE-2025-0392)

免责申明: 本文所描述的漏洞及其复现步骤仅供网络安全研究与教育目的使用。任何人不得将本文提供的信息用于非法目的或未经授权的系统测试。作者不对任何由于使用本文信息而导致的直接或间接损害承担责任。如涉及侵权,请及时与我们联系,我们将尽快处理并删除相关内容。 0x0…...

基于Python+django+mysql旅游数据爬虫采集可视化分析推荐系统

2024旅游推荐系统爬虫可视化&#xff08;协同过滤算法&#xff09; 基于Pythondjangomysql旅游数据爬虫采集可视化分析推荐系统 有文档说明 部署文档 视频讲解 ✅️基于用户的协同过滤推荐算法 卖价就是标价~ 项目技术栈 Python语言、Django框架、MySQL数据库、requests网络爬虫…...

我的工作经历

主要说一下毕业工作大半年了一些心得与想法。 首先是因为本科不好的原因&#xff0c;单2硕士找了一个国企&#xff08;其实应该说是央企&#xff09;。也幸好找的是央企&#xff0c;后续工作基本上没有强度&#xff0c;不然后期神经衰弱抑郁症家里乱七八糟催婚的事情能把人逼疯…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

ubuntu搭建nfs服务centos挂载访问

在Ubuntu上设置NFS服务器 在Ubuntu上&#xff0c;你可以使用apt包管理器来安装NFS服务器。打开终端并运行&#xff1a; sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享&#xff0c;例如/shared&#xff1a; sudo mkdir /shared sud…...

电脑插入多块移动硬盘后经常出现卡顿和蓝屏

当电脑在插入多块移动硬盘后频繁出现卡顿和蓝屏问题时&#xff0c;可能涉及硬件资源冲突、驱动兼容性、供电不足或系统设置等多方面原因。以下是逐步排查和解决方案&#xff1a; 1. 检查电源供电问题 问题原因&#xff1a;多块移动硬盘同时运行可能导致USB接口供电不足&#x…...

Mac软件卸载指南,简单易懂!

刚和Adobe分手&#xff0c;它却总在Library里给你写"回忆录"&#xff1f;卸载的Final Cut Pro像电子幽灵般阴魂不散&#xff1f;总是会有残留文件&#xff0c;别慌&#xff01;这份Mac软件卸载指南&#xff0c;将用最硬核的方式教你"数字分手术"&#xff0…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据

微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列&#xff0c;以便知晓哪些列包含有价值的数据&#xff0c;…...

处理vxe-table 表尾数据是单独一个接口,表格tableData数据更新后,需要点击两下,表尾才是正确的

修改bug思路&#xff1a; 分别把 tabledata 和 表尾相关数据 console.log() 发现 更新数据先后顺序不对 settimeout延迟查询表格接口 ——测试可行 升级↑&#xff1a;async await 等接口返回后再开始下一个接口查询 ________________________________________________________…...