10.【线性代数】—— 四个基本子空间
十、 四个基本子空间
讨论矩阵 A m ∗ n A_{m*n} Am∗n的四个基本空间,m行 n列
1. 列空间 C ( A ) C(A) C(A) in R m R^m Rm
[ c o l 11 c o l 21 . . . c o l n 1 c o l 12 c o l 22 . . . c o l n 2 . . . . . . . . . . . . c o l 1 m c o l 23 . . . c o l n m ] ⏟ A [ a b . . . c ] ⏟ x = a ∗ c o l 1 + b ∗ c o l 2 + . . . + c ∗ c o l n \underbrace{\begin{bmatrix} col_{11}&col_{21}&...&col_{n1}\\ col_{12}&col_{22}&...&col_{n2}\\ ...&...&...&...\\ col_{1m}&col_{23}&...&col_{nm} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} a\\b\\...\\c \end{bmatrix}}_{x} =a*col_1+b*col_2+...+c*col_n A col11col12...col1mcol21col22...col23............coln1coln2...colnm x ab...c =a∗col1+b∗col2+...+c∗coln
其中 c o l 1 = [ c o l 11 c o l 12 . . . c o l 1 m ] col_1 = \begin{bmatrix} col_{11}\\ col_{12}\\ ...\\ col_{1m} \end{bmatrix} col1= col11col12...col1m ,表示矩阵 A m ∗ n A_{m*n} Am∗n的第一列。因为一行有m个元素,所以在 R m R^m Rm空间中
将矩阵的每一列,看成一个向量,他们的所有线性组合(数乘和加法)在一个子空间中,这个子空间,记为 C(A),即A的列空间。
维度为矩阵的秩,记 r r r
2. 零空间 N ( A ) N(A) N(A) in R n R^n Rn
矩阵A的零空间 :满足 Ax =0 的所有向量。
由之前的知识,矩阵 A A A,可以化简为 [ I F 0 0 ] \begin{bmatrix} I&F\\0&0 \end{bmatrix} [I0F0],得出零空间为 N ( A ) = N ( R ) = [ − F I ] N(A)=N(R)=\begin{bmatrix} -F\\I \end{bmatrix} N(A)=N(R)=[−FI]。
由于 A 一行有 n 个元素,所以 N ( A ) 一列有 n 个元素,所以 N ( A ) 在 R n 空间 由于A一行有n个元素,所以N(A)一列有n个元素,所以N(A) 在 R^n 空间 由于A一行有n个元素,所以N(A)一列有n个元素,所以N(A)在Rn空间
维度=自由列的个数= n − r n-r n−r
3. 行空间 C ( A T ) C(A^T) C(AT) in R n R^n Rn
矩阵 A A A的行空间 = 矩阵 A T A^T AT的列空间
之前进行矩阵消元时,矩阵 A A A化简得到矩阵 R = [ I F 0 0 ] R=\begin{bmatrix} I&F\\0&0 \end{bmatrix} R=[I0F0]。
矩阵 R 的列空间 C ( R ) ≠ C ( A ) 矩阵 R的列空间 C(R)\neq C(A) 矩阵R的列空间C(R)=C(A),但两者的行空间相同。
维度为 r r r。
4. 左零空间 N ( A T ) N(A^T) N(AT) in R m R^m Rm
由于
A T y = 0 ⇒ 两遍求转置 y T A T T = 0 ⇒ y T A ⏟ 左乘 = 0 A^Ty = 0 \xRightarrow{两遍求转置} y^T{A^T}^T = 0 \xRightarrow{} \underbrace{y^TA}_{\text{左乘}} = 0 ATy=0两遍求转置yTATT=0左乘 yTA=0
所以 N ( A T ) N(A^T) N(AT)称矩阵A的左零空间。
维度为 m − r m-r m−r。
综述
空间 | C ( A ) C(A) C(A) | C ( A T ) C(A^T) C(AT) | N ( A ) N(A) N(A) | N ( A T ) N(A^T) N(AT) |
---|---|---|---|---|
基 | 主列 | - | 特殊解 | - |
维度 | r r r | r r r | n − r n-r n−r | m − r m-r m−r |
性质 | 行空间与列空间维度相同,行秩=列秩 |
5. 新的向量空间
所有3x3的矩阵( M M M)
M M M的子空间: 所有上三角矩阵|| 对称矩阵|| 对角矩阵
子空间:满足其矩阵的线性组合(数乘、加减)都在其空间内
相关文章:

10.【线性代数】—— 四个基本子空间
十、 四个基本子空间 1. 列空间 C ( A ) C(A) C(A) in R m R^m Rm2. 零空间 N ( A ) N(A) N(A) in R n R^n Rn3. 行空间 C ( A T ) C(A^T) C(AT) in R n R^n Rn4. 左零空间 N ( A T ) N(A^T) N(AT) in R m R^m Rm综述5. 新的向量空间 讨论矩阵 A m ∗ n A_{m*n} Am∗n…...

计算机黑皮书191本分享pdf
“黑皮书”通常指的是由机械工业出版社出版的计算机科学丛书。这些书籍的封面通常是黑色的,因此得名“黑皮书”。这些书籍涵盖了计算机科学的各个领域,包括操作系统、计算机网络、软件工程、编译原理、数据库等。 获取链接:链接:https://pan…...

MySQL Connector/J下载
MySQL Connector/J下载 下载mysql驱动jar包。 官网:https://downloads.mysql.com/archives/c-j/ 我下载的是8.0.33,下载的时候要注意与MySQL的版本对应。...

AIGC生图产品PM必须知道的Lora训练知识!
hihi,其实以前在方向AIGC生图技术原理和常见应用里面已经多次提到Lora的概念了,但是没有单独拿出来讲过,今天就耐心来一下! 🔥 一口气摸透AIGC文生图产品SD(Stable Diffusion)! 一、…...

【Swift 算法实战】城市天际线问题解法
网罗开发 (小红书、快手、视频号同名) 大家好,我是 展菲,目前在上市企业从事人工智能项目研发管理工作,平时热衷于分享各种编程领域的软硬技能知识以及前沿技术,包括iOS、前端、Harmony OS、Java、Python等…...
易错点abc
在同一个输入流上重复创建Scanner实例可能会导致一些问题,包括但不限于输入流的混乱。尤其是在处理标准输入(System.in)时,重复创建Scanner对象通常不是最佳实践,因为这可能导致某些输入数据丢失或者顺序出错。 为什么…...
C++ 正则表达式分组捕获入门指南
在 C 中,正则表达式(regex)是一种用于匹配字符串模式的强大工具。正则表达式不仅能帮助你查找符合特定模式的字符,还能捕获匹配的子字符串(即分组捕获)。这篇文章将介绍 C 正则表达式中的分组捕获机制&…...

AI人工智能机器学习之降维和数据压缩
1、概要 本篇学习AI人工智能机器学习之降维和数据压缩,以主成分分析(PCA, Principal Component Analysis)为例,从代码层面讲述机器学习中的降维和数据压缩。 2、降维和数据压缩 - 简介 在机器学习和数据分析中,降维&…...
17 款电脑压缩工具详解及下载指南(2025 年最新版)
在数字时代,文件压缩是日常工作与生活中不可或缺的操作。无论是视频剪辑师压缩视频以便上传,还是普通用户节省存储空间,一款优质的压缩软件都能极大提升效率。本文将详细介绍 17 款热门电脑压缩软件,涵盖它们的特点、下载地址及适用场景,助你找到最适合自己的工具。 一、…...

DeepSeek开源周Day5压轴登场:3FS与Smallpond,能否终结AI数据瓶颈之争?
2025年2月28日,DeepSeek开源周迎来了第五天,也是本次活动的收官之日。自2月24日启动以来,DeepSeek团队以每天一个开源项目的节奏,陆续向全球开发者展示了他们在人工智能基础设施领域的最新成果。今天,他们发布了Fire-F…...
ROS2软件调用架构和机制解析:Publisher创建
术语 DDS (Data Distribution Service): 用于实时系统的数据分发服务标准,是ROS 2底层通信的基础RMW (ROS Middleware): ROS中间件接口,提供与具体DDS实现无关的抽象APIQoS (Quality of Service): 服务质量策略,控制通信的可靠性、历史记录、…...

【落羽的落羽 C++】C++入门基础·其之一
文章目录 一、C简介1. C的发展历史2. C参考文档 二、namespace命名空间1. C语言的一个缺陷2. namespace3. 命名空间的使用3.1 命名空间成员访问3.2 using展开 一、C简介 1. C的发展历史 C起源于1979年的贝尔实验室,Bjarne Stroustrup(本贾尼博士&#…...

docker使用代理的简单配置
1准备代理服务器 准备代理服务器,例如192.168.120.168:52209 配置docker.service文件 查看service文件的位置 systemctl status docker 编辑service文件 vim /usr/lib/systemd/system/docker.service 添加代理配置 ... [Service] Environment"HTTP_PROXY…...

每日一题-设计食物评分系统,哈希表的有效使用
本题出自LeetCode2353.设计食物评分系统,连着一星期都是设计类的题目哈 题目 设计一个支持下述操作的食物评分系统: 修改 系统中列出的某种食物的评分。返回系统中某一类烹饪方式下评分最高的食物。 实现 FoodRatings 类: FoodRatings(Strin…...
大模型应用:多轮对话(prompt工程)
概述 在与大型语言模型(如ChatGPT)交互的过程中,我们常常体验到与智能助手进行连贯多轮对话的便利性。那么,当我们开启一个新的聊天时,系统是如何管理聊天上下文的呢? 一、初始上下文的建立 1. 创建新会…...

WSDM24-因果推荐|因果去偏的可解释推荐系统
1 动机 可解释推荐系统(ERS)通过提供透明的推荐解释,提高用户信任度和系统的说服力,如下图所示,然而: 1:现有工作主要关注推荐算法的去偏(流行度偏差),但未显…...
VScode在Windows11中配置MSVC
因为MSVC编译器在vs当中,所以我们首先要安装vs的一部分组件。如果只是需要MSVC的话,工作负荷一个都不需要勾选,在单个组件里面搜索MSVC和windows11 SDK,其中一个是编译器,一个是头文件然后右下角安装即可。搜索Develop…...

数据库基础二(数据库安装配置)
打开MySQL官网进行安装包的下载 https://www.mysql.com/ 接着找到适用于windows的版本 下载版本 直接点击下载即可 接下来对应的内容分别是: 1:安装所有 MySQL 数据库需要的产品; 2:仅使用 MySQL 数据库的服务器; 3&a…...

cuda-12.4.0 devel docker 中源码安装 OpenAI triton
1,准备 docker 容器 下载docker image: $ sudo docker pull nvidia/cuda:12.6.2-devel-ubuntu20.04 创建容器: sudo docker run --gpus all -it --name cuda_LHL_01 -v /home/hongleili/ex_triton/tmp1:/root/ex_triton/tmp1 nvidia/cuda:12.6…...
doris: Hive Catalog
通过连接 Hive Metastore,或者兼容 Hive Metatore 的元数据服务,Doris 可以自动获取 Hive 的库表信息,并进行数据查询。 除了 Hive 外,很多其他系统也会使用 Hive Metastore 存储元数据。所以通过 Hive Catalog,我们不…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...

如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...

【OSG学习笔记】Day 16: 骨骼动画与蒙皮(osgAnimation)
骨骼动画基础 骨骼动画是 3D 计算机图形中常用的技术,它通过以下两个主要组件实现角色动画。 骨骼系统 (Skeleton):由层级结构的骨头组成,类似于人体骨骼蒙皮 (Mesh Skinning):将模型网格顶点绑定到骨骼上,使骨骼移动…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

深度学习习题2
1.如果增加神经网络的宽度,精确度会增加到一个特定阈值后,便开始降低。造成这一现象的可能原因是什么? A、即使增加卷积核的数量,只有少部分的核会被用作预测 B、当卷积核数量增加时,神经网络的预测能力会降低 C、当卷…...
JavaScript 数据类型详解
JavaScript 数据类型详解 JavaScript 数据类型分为 原始类型(Primitive) 和 对象类型(Object) 两大类,共 8 种(ES11): 一、原始类型(7种) 1. undefined 定…...
4. TypeScript 类型推断与类型组合
一、类型推断 (一) 什么是类型推断 TypeScript 的类型推断会根据变量、函数返回值、对象和数组的赋值和使用方式,自动确定它们的类型。 这一特性减少了显式类型注解的需要,在保持类型安全的同时简化了代码。通过分析上下文和初始值,TypeSc…...