当前位置: 首页 > news >正文

采样算法二:去噪扩散隐式模型(DDIM)采样算法详解教程

参考

https://arxiv.org/pdf/2010.02502
在这里插入图片描述


一、背景与动机

去噪扩散隐式模型(DDIM) 是对DDPM的改进,旨在加速采样过程同时保持生成质量。DDPM虽然生成效果优异,但其采样需迭代数百至数千次,效率较低。DDIM通过以下关键创新解决该问题:

  • 非马尔可夫反向过程:打破严格的马尔可夫链假设,允许跳步采样。
  • 确定性生成路径:通过设定参数σ=0,实现确定性采样,减少随机性带来的不确定性。
  • 兼容性:使用与DDPM相同的训练模型,无需重新训练。

二、DDIM与DDPM的核心区别
特性DDPMDDIM
反向过程严格马尔可夫链非马尔可夫,允许跳跃式采样
采样速度慢(需完整迭代所有时间步)快(可跳过中间步,如50步代替1000步)
随机性控制固定方差调度(βₜ)可调参数σₜ(σ=0时为确定性采样)
训练目标需完整训练噪声预测模型直接复用DDPM的预训练模型

三、数学推导与关键公式
1. 前向过程的一致性

DDIM沿用DDPM的前向扩散过程定义,任意时刻( x_t )可表示为:
x t = α ˉ t x 0 + 1 − α ˉ t ϵ , ϵ ∼ N ( 0 , I ) x_t = \sqrt{\bar{\alpha}_t} x_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, \quad \epsilon \sim \mathcal{N}(0, \mathbf{I}) xt=αˉt x0+1αˉt ϵ,ϵN(0,I)
其中 α ˉ t = ∏ i = 1 t α i \bar{\alpha}_t = \prod_{i=1}^t \alpha_i αˉt=i=1tαi, α t = 1 − β t \alpha_t = 1 - \beta_t αt=1βt

2. 反向过程的重新参数化

DDIM将反向过程定义为非马尔可夫链,允许从任意时间步( t )直接推断( x_{t-Δ} )(Δ为跳跃步长)。其核心公式为:
x t − Δ = α ˉ t − Δ ( x t − 1 − α ˉ t ϵ θ ( x t , t ) α ˉ t ) ⏟ 预测的  x 0 + 1 − α ˉ t − Δ − σ t 2 ⋅ ϵ θ ( x t , t ) + σ t z x_{t-Δ} = \sqrt{\bar{\alpha}_{t-Δ}} \underbrace{\left( \frac{x_t - \sqrt{1 - \bar{\alpha}_t} \epsilon_\theta(x_t, t)}{\sqrt{\bar{\alpha}_t}} \right)}_{\text{预测的 } x_0} + \sqrt{1 - \bar{\alpha}_{t-Δ} - \sigma_t^2} \cdot \epsilon_\theta(x_t, t) + \sigma_t z xtΔ=αˉtΔ 预测的 x0 (αˉt xt1αˉt ϵθ(xt,t))+1αˉtΔσt2 ϵθ(xt,t)+σtz

  • 第一项:基于当前 x t x_t xt和预测噪声 ϵ θ \epsilon_\theta ϵθ估计的原始数据 x 0 x_0 x0
  • 第二项:沿预测噪声方向的确定性更新。
  • 第三项:可控的随机噪声项, z ∼ N ( 0 , I ) z \sim \mathcal{N}(0, \mathbf{I}) zN(0,I)
3. 参数σₜ的作用
  • σₜ=0:完全确定性采样(DDIM的标准设定),生成结果唯一。
  • σₜ=√[(1−αₜ₋₁)/(1−αₜ)] · √(1−αₜ/αₜ₋₁):恢复DDPM的采样过程。

四、DDIM采样算法步骤
  1. 输入

    • 预训练噪声预测模型 ϵ θ \epsilon_\theta ϵθ
    • 总时间步 T T T,子序列步数 S S S(如 S = 50 S=50 S=50
    • 方差调度参数 { α t } \{\alpha_t\} {αt}
    • 随机性控制参数 σ t \sigma_t σt
  2. 生成时间步子序列
    选择递减的子序列 { τ 1 , τ 2 , . . . , τ S } \{\tau_1, \tau_2, ..., \tau_S\} {τ1,τ2,...,τS},例如均匀间隔或余弦调度。

  3. 初始化:采样初始噪声 x T ∼ N ( 0 , I ) x_T \sim \mathcal{N}(0, \mathbf{I}) xTN(0,I)

  4. 迭代去噪(从 τ S \tau_S τS τ 1 \tau_1 τ1):

    • 预测噪声 ϵ = ϵ θ ( x τ s , τ s ) \epsilon = \epsilon_\theta(x_{\tau_s}, \tau_s) ϵ=ϵθ(xτs,τs)
    • 估计原始数据
      x ^ 0 = x τ s − 1 − α ˉ τ s ϵ α ˉ τ s \hat{x}_0 = \frac{x_{\tau_s} - \sqrt{1 - \bar{\alpha}_{\tau_s}} \epsilon}{\sqrt{\bar{\alpha}_{\tau_s}}} x^0=αˉτs xτs1αˉτs ϵ
    • 计算下一步状态
      x τ s − 1 = α ˉ τ s − 1 x ^ 0 + 1 − α ˉ τ s − 1 − σ τ s 2 ⋅ ϵ + σ τ s z x_{\tau_{s-1}} = \sqrt{\bar{\alpha}_{\tau_{s-1}}} \hat{x}_0 + \sqrt{1 - \bar{\alpha}_{\tau_{s-1}} - \sigma_{\tau_s}^2} \cdot \epsilon + \sigma_{\tau_s} z xτs1=αˉτs1 x^0+1αˉτs1στs2 ϵ+στsz
      • σ τ s = 0 \sigma_{\tau_s}=0 στs=0时,最后一项消失,变为确定性更新。
  5. 输出 x 0 x_0 x0为生成的数据。


五、伪代码示例
def ddim_sample(model, T, S, alphas_bar, sigmas):# 生成时间步子序列(如从T到0每隔k步取一次)tau = np.linspace(T, 0, S+1, dtype=int)  # 示例:线性间隔x = torch.randn_like(data)  # x_T ~ N(0, I)for s in range(S, 0, -1):t_current = tau[s]t_prev = tau[s-1]# 预测噪声epsilon = model(x, t_current)# 估计x0x0_hat = (x - np.sqrt(1 - alphas_bar[t_current]) * epsilon) / np.sqrt(alphas_bar[t_current])# 计算系数coeff1 = np.sqrt(alphas_bar[t_prev])coeff2 = np.sqrt(1 - alphas_bar[t_prev] - sigmas[t_current]**2)# 更新xx = coeff1 * x0_hat + coeff2 * epsilon + sigmas[t_current] * torch.randn_like(x)return x

相关文章:

采样算法二:去噪扩散隐式模型(DDIM)采样算法详解教程

参考 https://arxiv.org/pdf/2010.02502 一、背景与动机 去噪扩散隐式模型(DDIM) 是对DDPM的改进,旨在加速采样过程同时保持生成质量。DDPM虽然生成效果优异,但其采样需迭代数百至数千次,效率较低。DDIM通过以下关键…...

北京大学DeepSeek提示词工程与落地场景(PDF无套路免费下载)

近年来,大模型技术飞速发展,但许多用户发现:即使使用同一款 AI 工具,效果也可能天差地别——有人能用 AI 快速生成精准方案,有人却只能得到笼统回答。这背后的关键差异,在于提示词工程的应用能力。 北京大…...

Hutool - POI:让 Excel 与 Word 操作变得轻而易举

各位开发者们,在日常的 Java 开发工作里,处理 Excel 和 Word 文件是相当常见的需求。无论是从 Excel 里读取数据进行分析,还是将数据写入 Excel 生成报表,亦或是对 Word 文档进行内容编辑,传统的 Apache POI 库虽然功能…...

IDEAPyCharm安装ProxyAI(CodeGPT)插件连接DeepSeek-R1教程

背景:最近DeepSeek比较火嘛,然后在githup上也看到了GitHub Copilot,就想着现在AI的准确率已经可以提高工作效率了。所以从网上找了一些编程插件,发现Proxy支持的模型比较多,通用性和适配性比较好。所以本文记录一下pro…...

Iceberg Catalog

使用限制​ 支持 Iceberg V1/V2 表格式。支持 Position Delete。2.1.3 版本开始支持 Equality Delete。支持 Parquet 文件格式2.1.3 版本开始支持 ORC 文件格式。 创建 Catalog​ 基于 Hive Metastore 创建 Catalog​ 和 Hive Catalog 基本一致,这里仅给出简单示…...

2025年2月个人工作生活总结

本文为 2025年2月工作生活总结。 工作记录 AI浪潮 AI非常火,春节至今,到处充斥着大量和AI、DeepSeek有关的新闻。领导也一再强调要用AI,甚至纳入到新一年的考核里。再往上,大领导开会的新闻稿里也作出要求,不能停下脚…...

vscode java环境中文乱码的问题

先说我的结论: 由于我的系统是windows的,所以vscode使用的是默认gbk的编码进行的。 但是我的目的是全部都使用utf-8,因为我的程序始终是要去linux上去运行的,总不能在本地是好的,然后到服务器上就不行了吧,…...

Java数据结构第十五期:走进二叉树的奇妙世界(四)

专栏:Java数据结构秘籍 个人主页:手握风云 目录 一、二叉树OJ练习题(续) 1.1. 二叉树的层序遍历 1.2. 二叉树的最近公共祖先 1.3. 从前序与中序遍历序列构造二叉树 1.4. 从中序与后序遍历序列构造二叉树 1.5. 根据二叉树创建…...

【MySQL】CAST()在MySQL中的用法以及其他常用的数据类型转换函数

1. cast() CAST() 在 MySQL 中用于将一个表达式的类型转换为另一个类型。这在处理不同类型的数据时非常有用,比如将字符串转换为数字,或者将浮点数转换为整数等。 1.1 CAST() 函数的基本语法 CAST() 函数的基本语法如下: CAST(expression…...

使用Truffle、Ganache、MetaMask、Vue+Web3完成的一个简单区块链项目

文章目录 概要初始化Truffle项目创建编写合约编译合约配置Ganache修改truffle-config.js文件编写迁移文件部署合约使用Truffle 控制台使用MetaMask和VueWeb3与链交互 概要 使用Truffle、Ganache、MetaMask、VueWeb3完成的一个简单区块链项目。 初始化Truffle项目 安装好truf…...

初出茅庐的小李博客之按键驱动库使用

驱动库介绍 源码地址:https://github.com/jiejieTop/ButtonDrive 使用只需3步,创建按键,按键事件与回调处理函数链接映射,周期检查按键,支持单双击、连按、长按;采用回调处理按键事件(自定义消…...

如何调试Linux内核?

通过创建一个最小的根文件系统,并使用QEMU和GDB进行调试。 1.准备工作环境 确保系统上安装了所有必要的工具和依赖项。 sudo apt-get update //更新一下软件包 sudo apt-get install build-essential git libncurses-dev bison flex libssl-dev qemu-system-x…...

ECharts组件封装教程:Vue3中的实践与探索

在日常的前端开发中,ECharts 作为一款强大且易用的图表库,被广泛应用于数据可视化场景。为了更好地在 Vue3 项目中复用 ECharts 功能,我们可以将其封装成一个组件。本文将带大家一步步实现 ECharts 的 Vue3 组件封装,并演示如何在父组件中调用和使用。 一、封装 ECharts 组…...

NAT 代理服务 内网穿透

🌈 个人主页:Zfox_ 🔥 系列专栏:Linux 目录 一:🔥 NAT 技术背景二:🔥 NAT IP 转换过程三:🔥 NAPT四:🔥 代理服务器🦋 正向…...

CAN硬件协议详解

一、基本理论: 1、CAN的总线结构: CAN总线 网络结构 有 闭环和开环 两种形式;无论实际的网络多复杂,都离不开这两种基本结构。 闭环结构的CAN总线网络,总线的两端各并联一个120Ω的电阻,两…...

网络安全等级保护:网络安全等级保护基本技术

下面我们概括性探讨一下等级保护用到的一些技术,有关这些技术的每一个方面的每一个部分都可以是一部大块头,甚至一部大块头都无法介绍清楚,需要系列性的书籍去展开,所以这里也只能做到抛砖而已。期望起到抛砖引玉的作用&#xff0…...

信刻光盘安全隔离与信息交换系统让“数据摆渡”安全高效

随着数据传输、存储及信息技术的飞速发展,信息安全保护已成为重中之重。各安全领域对跨网数据交互的需求日益迫切,数据传输的安全可靠性成为不可忽视的关键。为满足业务需求并遵守保密规范,针对于涉及重要秘密信息,需做到安全的物…...

数据结构课程设计(java实现)---九宫格游戏,也称幻方

【问题描述】 九宫格,一款数字游戏,起源于河图洛书,与洛书是中国古代流传下来的两幅神秘图案,历来被认为是河洛文化的滥觞,中华文明的源头,被誉为"宇宙魔方"。九宫格游戏对人们的思维锻炼有着极大…...

[思考记录]AI时代下,悄然的改变

尝试用 xAI-Grok 去了解DS开源周的信息,有那么点被Grok的输出惊艳到。“请你以技术编辑的角色,重点参考官方文档,介绍DeepSeek开源周的内容,写一篇技术分享文章。”,得到的文字看起来很是舒服,内容靠谱、结…...

JAVA笔记【一】

现实 (抽象) 类 (创建) 对象 特点: 1.面向对象 2.跨平台 3.安全性 4.多线程 java程序基本结构 1. java源代码文件实际是普通的文本文件,源代码文件必须是.java扩展名,且必须小写 2. …...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...

day52 ResNet18 CBAM

在深度学习的旅程中,我们不断探索如何提升模型的性能。今天,我将分享我在 ResNet18 模型中插入 CBAM(Convolutional Block Attention Module)模块,并采用分阶段微调策略的实践过程。通过这个过程,我不仅提升…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色,华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型,能助力我们轻松驾驭 DeepSeek-V3/R1,本文中将分享如何…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 题目描述解题思路Java代码 题目描述 题目链接:LeetCode 3309. 连接二进制表示可形成的最大数值(中等) 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)

一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...