利用 Python 爬虫进行跨境电商数据采集
- 1 引言
- 2 代理IP的优势
- 3 获取代理IP账号
- 4 爬取实战案例---(某电商网站爬取)
- 4.1 网站分析
- 4.2 编写代码
- 4.3 优化代码
- 5 总结
1 引言
在数字化时代,数据作为核心资源蕴含重要价值,网络爬虫成为企业洞察市场趋势、学术研究探索未知领域的重要技术手段。然而爬虫实践中常面临技术挑战,例如某电商企业通过爬虫获取竞品数据时,因高频请求触发目标平台 IP 封锁机制导致采集中断。IP 代理在网络爬虫中发挥关键作用:通过分布式请求分散访问压力,可规避单 IP 高频访问限制并突破地域内容获取限制;同时能隐藏真实 IP 地址降低法律风险,模拟多用户行为特征优化反爬虫策略,有效平衡数据获取需求与网络访问规则。这种技术工具通过突破技术限制、提升采集效率、保障数据安全等多维价值,成为网络爬虫体系中的重要组成部分。本文将介绍代理IP在网络爬虫中的重要性,并结合实际应用。
2 代理IP的优势
-
强大的架构性能:采用高性能分布式集群架构,具备无限并发能力,不限制并发请求,能完美满足多终端使用需求,为各类业务稳定运行提供坚实保障。
-
丰富的功能配置:支持多种代理认证模式,同时兼容 HTTP、HTTPS 以及 socks5 协议。还提供 API 接口调用与可视化监控统计功能,为用户业务开展提供极大便利。
-
优质的资源保障:拥有千万级优质住宅代理 IP 池,实时更新来自 200 多个国家的真实家庭住宅 IP。这些 IP 具有高效率、低延迟的特点,且能提供超高私密性,有力保障数据安全。
-
个性化的定制服务:兼顾个人和企业用户的专属需求,支持根据业务场景定制独享 IP。 这个团队提供 24 小时服务与技术支持,全方位满足用户多样化业务需求。
3 获取代理IP账号
这里我们可以选择进入官网网站,获取账号

在测试前,我们记得实名认证一下,这样我们就可以享受500M测试的额度了,接下来我们简单演示一下使用账密认证的形式获取代理~
在获取代理前,我们首先要创建一下子账号,这里的用户名和密码都要采用字母+数字

接下来我们就可以获取代理信息了,前往获取代理,然后选择账密认证。这里选择所需的地区、子用户、粘性会话、代理协议以及我们需要的其他参数,我这里默认

生成代理信息,完成前面的设置后,我们将获得代理信息。请复制提供的详细信息并在您的代理软件中配置使用。

套餐选择一般有两个选项动态住宅代理和静态住宅代理,当然我相信很多人是不了解这两个的,这里我简单的介绍一下
-
动态住宅代理的 IP 地址处于不断变化之中,这使得它在模拟多样化用户行为、规避网站访问限制等方面表现出色,像网络爬虫、广告验证等场景常能看到它的身影。其成本往往根据使用量或时长而定,相对较为灵活,价格一般不算高,还能为用户提供较好的匿名性保护,不过在速度和稳定性上可能会有一些波动。
-
静态住宅代理有着固定不变的 IP 地址,在速度和稳定性方面更具优势,适用于对网络质量要求高的网站测试、电商监控等场景。由于其资源的特殊性,价格通常偏高,而且因为 IP 固定,相对容易被追踪,匿名性稍弱。
此外官方还设置了许多使用教程,感兴趣的小伙伴可自行查阅!
接下来让我们进入爬取实战环节。
4 爬取实战案例—(某电商网站爬取)
4.1 网站分析
这是一个海外电商平台,今天我想要获取下面图中一些信息,这里选取的关键词是:IPhone 16

接下来我们想要获取商品的:title、price、link,如何获取呢,我们可以选择点击键盘上的F12,之后我们就可以按照下面的示例,进行选中对应的块了

这里我们选择通过soup.find_all(‘div’, class_=‘product-tuple-listing’)来查找所有的商品块

每个商品块包含了:
- 商品名称:位于
<p class="product-title">标签中。 - 商品价格:位于
<span class="lfloat product-price">标签中。 - 商品链接:位于
<a>标签中,包含href属性。
上面是简单的网站结构分析,下面我们进行实战
4.2 编写代码
- 首先我们需要导入库,这里我们导入requests和bs4,这两种库
requests是 Python 中一个简洁且功能强大的 HTTP 库,用于发送各种 HTTP 请求,使得在 Python 中进行网络请求变得非常容易。bs4即BeautifulSoup 4,是一个用于解析 HTML 和 XML 文档的 Python 库,能够从网页中提取所需的数据。
import requests
from bs4 import BeautifulSoup
- 其次设置请求头,如下
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}
- 模拟浏览器请求。很多网站会根据请求头来判断请求是否来自浏览器,以防止自动化脚本等的访问。这里你也可以选择多设置几个

-
之后我们确定目标 URL,这里是可以变动的,但是如果变动过大的话,后面对应的结构也得变动
-
获取页面的内容,requests.get(url, headers=headers):发送 GET 请求到 Snapdeal 网站,获取网页内容。
response.text:获取返回的 HTML 内容。BeautifulSoup(response.text, ‘html.parser’):使用
BeautifulSoup解析 HTML 内容。'html.parser'是解析器,BeautifulSoup会将 HTML 内容转换成一个可以通过 Python 代码进行操作的对象。response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser') -
定义提取商品信息的函数,这里使用find_all函数
def extract_product_info():products = []product_elements = soup.find_all('div', class_='product-tuple-listing')这里设置products = []:初始化一个空列表,用来存储商品信息。
soup.find_all('div', class_='product-tuple-listing'):通过BeautifulSoup找到所有符合条件的div元素,这些div元素是每个商品的容器。根据页面的结构,每个商品信息都被包含在一个div标签中,其类名为product-tuple-listing。 -
接下来就是for循环遍历了
for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p', class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span', class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None
上面就是整个代码的核心步骤,下面我给出完整的代码
import requests
from bs4 import BeautifulSoup# 设置请求头模仿浏览器
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}# 指定 URL,这里用的是你提供的 iPhone 16 搜索页面链接
url = 'https://www.snapdeal.com/search?keyword=iPhone%2016&santizedKeyword=Sony&catId=0&categoryId=0&suggested=false&vertical=p&noOfResults=20&searchState=&clickSrc=go_header&lastKeyword=&prodCatId=&changeBackToAll=false&foundInAll=false&categoryIdSearched=&cityPageUrl=&categoryUrl=&url=&utmContent=&dealDetail=&sort=rlvncy'# 获取页面内容
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')# 提取商品的名称、价格、URL等
def extract_product_info():products = []# 找到包含产品的所有元素product_elements = soup.find_all('div', class_='product-tuple-listing')for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p',class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span',class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None# 仅当所有必要的字段都有时才记录if title and price and link:product_info = {'title': title,'price': price,'link': f'https://www.snapdeal.com{link}',}products.append(product_info)return products# 获取并打印产品信息
products = extract_product_info()
for product in products:print(f"Title: {product['title']}")print(f"Price: {product['price']}")print(f"Link: {product['link']}")print("-" * 40)
下面是运行的结果:

4.3 优化代码
接下来我们使用代理再试试,下面是官方为我们提供的关于Demo示例,从代码来看,还是十分简洁明了的
import requests
if __name__ == '__main__':
proxyip = "http://username_custom_zone_US:password@us.ipwo.net:7878"
url = "http://ipinfo.io"
proxies = {
'http': proxyip,
}
data = requests.get(url=url, proxies=proxies)
print(data.text)
接下来我们再根据提供的代码示例,从而优化我们的代码,下面是完整的代码阐述
import requests
from bs4 import BeautifulSoup# 设置请求头模仿浏览器
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}# 设置代理
proxyip = " " # 替换为你自己的ip信息
proxies = {'http': proxyip,
}# 指定 URL,这里用的是你提供的 iPhone 16 搜索页面链接
url = 'https://www.snapdeal.com/search?keyword=iPhone%2016&santizedKeyword=Sony&catId=0&categoryId=0&suggested=false&vertical=p&noOfResults=20&searchState=&clickSrc=go_header&lastKeyword=&prodCatId=&changeBackToAll=false&foundInAll=false&categoryIdSearched=&cityPageUrl=&categoryUrl=&url=&utmContent=&dealDetail=&sort=rlvncy'# 获取页面内容,使用代理,禁用 SSL 验证
response = requests.get(url, headers=headers, proxies=proxies, verify=False) # verify=False 关闭 SSL 验证
soup = BeautifulSoup(response.text, 'html.parser')# 提取商品的名称、价格、URL等
def extract_product_info():products = []# 找到包含产品的所有元素product_elements = soup.find_all('div', class_='product-tuple-listing')for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p', class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span', class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None# 仅当所有必要的字段都有时才记录if title and price and link:product_info = {'title': title,'price': price,'link': f'https://www.snapdeal.com{link}',}products.append(product_info)return products# 获取并打印产品信息
products = extract_product_info()
for product in products:print(f"Title: {product['title']}")print(f"Price: {product['price']}")print(f"Link: {product['link']}")print("-" * 40)
下面是运行结果:

5 总结
通过本文的介绍,我们可以清楚的了解并认识到代理在网络数据采集是十分重要的,针对snapdeal电商平台的商品数据采集,发现了IPWO的强大之处,使我们进行网络数据采集的时候,效率大大的提高~
相关文章:
利用 Python 爬虫进行跨境电商数据采集
1 引言2 代理IP的优势3 获取代理IP账号4 爬取实战案例---(某电商网站爬取)4.1 网站分析4.2 编写代码4.3 优化代码 5 总结 1 引言 在数字化时代,数据作为核心资源蕴含重要价值,网络爬虫成为企业洞察市场趋势、学术研究探索未知领域…...
设计模式--spring中用到的设计模式
一、单例模式(Singleton Pattern) 定义:确保一个类只有一个实例,并提供全局访问点 Spring中的应用:Spring默认将Bean配置为单例模式 案例: Component public class MySingletonBean {// Spring 默认将其…...
Qt控件中函数指针使用的最终版本,使用std::function
代码: class MyWidget : public QWidget { public:std::function<void(QResizeEvent* event)> pf_resizeEvent 0; protected:inline void resizeEvent(QResizeEvent* event) override {if (pf_resizeEvent ! 0)pf_resizeEvent(event);} };int main(int arg…...
Java中的泛型类 --为集合的学习做准备
学习目标 ● 掌握在集合中正确使用泛型 ● 了解泛型类、泛型接口、泛型方法 ● 了解泛型上下限 ● 了解基本的使用场景 1.有关泛型 1.1泛型的概念 泛型(Generics)是Java中引入的参数化类型机制,允许在定义类、接口或方法时使用类型参数&a…...
6.6.6 嵌入式SQL
文章目录 2个核心问题识别SQL语句主语言和SQL通信完整导图 2个核心问题 SQL语句嵌入高级语言需要解决的2个核心问题是:如何识别嵌入语句?如何让主语言(比如C,C语言)和SQL通信? 识别SQL语句 为了识别主语言中嵌入的SQL…...
基于C#的CANoe CLR Adapter开发指南
一、引言 CANoe 是一款广泛应用于汽车电子开发和测试的工具,它支持多种编程接口,方便开发者进行自定义扩展。CANoe CLR Adapter 允许我们使用 C# 语言与 CANoe 进行交互,充分利用 C# 的强大功能和丰富的类库。本文将详细介绍如何基于 C# 进行…...
【Qt】MVC设计模式
目录 一、搭建MVC框架 二、创建数据库连接单例类SingleDB 三、数据库业务操作类model设计 四、control层,关于model管理类设计 五、view层即为窗口UI类 一、搭建MVC框架 里面的bin、lib、database文件夹以及sqlite3.h与工程后缀为.pro文件的配置与上次发的文章…...
【手撕算法】支持向量机(SVM)从入门到实战:数学推导与核技巧揭秘
摘要 支持向量机(SVM)是机器学习中的经典算法!本文将深入解析最大间隔分类原理,手撕对偶问题推导过程,并实战实现非线性分类与图像识别。文中附《统计学习公式手册》及SVM调参指南,助力你掌握这一核心算法…...
JAVA面试常见题_基础部分_Dubbo面试题(上)
Dubbo 支持哪些协议,每种协议的应用场景,优缺点? • dubbo: 单一长连接和 NIO 异步通讯,适合大并发小数据量的服务调用,以及消费者远大于提供者。传输协议 TCP,异步,Hessian 序列化…...
CSS—隐藏元素:1分钟掌握与使用隐藏元素的方法
个人博客:haichenyi.com。感谢关注 1. 目录 1–目录2–display:none3–visibility: hidden4–opacity: 05–position: absolute;与 left: -9999px;6–z-index 和 position7–clip-path: circle(0%) 2. display:none 标签会挂载在html中,但是不会在页面上…...
二、双指针——5. 移动零
二、双指针——5. 移动零 题目描述示例示例1:示例2: 思路代码 题目描述 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操…...
论文笔记-NeurIPS2017-DropoutNet
论文笔记-NeurIPS2017-DropoutNet: Addressing Cold Start in Recommender Systems DropoutNet:解决推荐系统中的冷启动问题摘要1.引言2.前言3.方法3.1模型架构3.2冷启动训练3.3推荐 4.实验4.1实验设置4.2在CiteULike上的实验结果4.2.1 Dropout率的影响4.2.2 实验结…...
php 对接mqtt 完整版本,订阅消息,发送消息
首先打开链接如何在 PHP 项目中使用 MQTT 根据文章让所用依赖安装一下: composer require php-mqtt/client 安装之后弄一个部署 之后在工具里边可以相应链接上 接下来是代码: /**** 订阅消息* return void* throws \PhpMqtt\Client\Exceptions\Confi…...
谈谈 ES 6.8 到 7.10 的功能变迁(6)- 其他
这是 ES 7.10 相较于 ES 6.8 新增内容的最后一篇,主要涉及算分方法和同义词加载的部分。 自定义算分:script_score 2.0 Elasticsearch 7.0 引入了新一代的函数分数功能,称为 script_score 查询。这一新功能提供了一种更简单、更灵活的方式来…...
【苍穹外卖】问题笔记
【DAY1 】 1.VCS找不到 好吧,发现没安git 接着发现安全模式有问题,点开代码信任此项目 2.导入初始文件,全员爆红 好像没maven,配一个 并在设置里设置好maven 3.启用注解,见新手苍穹 pom.xml改lombok版本为1.1…...
脑机接口SSVEP 信号特征提取技术术语
目录 背景简介 1. 最小能量组合(MEC)和最大对比组合(MCC) 2. 典型相关分析(CCA) 3. 滤波器组CCA(FBCCA) 4. 二进制子带CCA(BsCCA) 5. 融合CCAÿ…...
【Veristand】Veristand 预编写教程目录
很久没有更新,最近打算出一期Veristand教程,暂时目录列成下面这个表格,如果各位有关心的遗漏的点,可以在评论区提问,我后期可以考虑添加进去,但是提前声明,太过小众的点我不会,欢迎各…...
C#光速入门的指南
以下是一份C#快速入门的指南,涵盖了基础语法、面向对象编程、输入输出、异常处理等方面,帮助你快速上手C#。 1. 开发环境搭建 要开始使用C#进行编程,你需要安装开发环境。最常用的是Visual Studio,它提供了丰富的工具和功能&…...
深入探索 STM32 微控制器:从基础到实践
一、引言 在当今的嵌入式系统领域,STM32 系列微控制器凭借其高性能、低功耗、丰富的外设以及广泛的应用场景,成为了众多开发者的首选。无论是在工业控制、智能家居、医疗设备,还是在消费电子等领域,STM32 都展现出了强大的生命力…...
Oracle性能调优(一):时间模型统计
Oracle性能调优(一):时间模型统计 时间模型统计视图时间模型统计指标时间模型统计视图 📖 DB Time的含义: DB Time表示前台会话在数据库调用中所花费的总时间,它是衡量数据库实例总负载的一个重要指标。DB Time是从实例启动时开始累计测量的,其计算方法是将所有前台会话…...
测试微信模版消息推送
进入“开发接口管理”--“公众平台测试账号”,无需申请公众账号、可在测试账号中体验并测试微信公众平台所有高级接口。 获取access_token: 自定义模版消息: 关注测试号:扫二维码关注测试号。 发送模版消息: import requests da…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
Mac软件卸载指南,简单易懂!
刚和Adobe分手,它却总在Library里给你写"回忆录"?卸载的Final Cut Pro像电子幽灵般阴魂不散?总是会有残留文件,别慌!这份Mac软件卸载指南,将用最硬核的方式教你"数字分手术"࿰…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
04-初识css
一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...
GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...
保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek
文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama(有网络的电脑)2.2.3 安装Ollama(无网络的电脑)2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...
