利用 Python 爬虫进行跨境电商数据采集
- 1 引言
- 2 代理IP的优势
- 3 获取代理IP账号
- 4 爬取实战案例---(某电商网站爬取)
- 4.1 网站分析
- 4.2 编写代码
- 4.3 优化代码
- 5 总结
1 引言
在数字化时代,数据作为核心资源蕴含重要价值,网络爬虫成为企业洞察市场趋势、学术研究探索未知领域的重要技术手段。然而爬虫实践中常面临技术挑战,例如某电商企业通过爬虫获取竞品数据时,因高频请求触发目标平台 IP 封锁机制导致采集中断。IP 代理在网络爬虫中发挥关键作用:通过分布式请求分散访问压力,可规避单 IP 高频访问限制并突破地域内容获取限制;同时能隐藏真实 IP 地址降低法律风险,模拟多用户行为特征优化反爬虫策略,有效平衡数据获取需求与网络访问规则。这种技术工具通过突破技术限制、提升采集效率、保障数据安全等多维价值,成为网络爬虫体系中的重要组成部分。本文将介绍代理IP在网络爬虫中的重要性,并结合实际应用。
2 代理IP的优势
-
强大的架构性能:采用高性能分布式集群架构,具备无限并发能力,不限制并发请求,能完美满足多终端使用需求,为各类业务稳定运行提供坚实保障。
-
丰富的功能配置:支持多种代理认证模式,同时兼容 HTTP、HTTPS 以及 socks5 协议。还提供 API 接口调用与可视化监控统计功能,为用户业务开展提供极大便利。
-
优质的资源保障:拥有千万级优质住宅代理 IP 池,实时更新来自 200 多个国家的真实家庭住宅 IP。这些 IP 具有高效率、低延迟的特点,且能提供超高私密性,有力保障数据安全。
-
个性化的定制服务:兼顾个人和企业用户的专属需求,支持根据业务场景定制独享 IP。 这个团队提供 24 小时服务与技术支持,全方位满足用户多样化业务需求。
3 获取代理IP账号
这里我们可以选择进入官网网站,获取账号
在测试前,我们记得实名认证一下,这样我们就可以享受500M测试的额度了,接下来我们简单演示一下使用账密认证的形式获取代理~
在获取代理前,我们首先要创建一下子账号,这里的用户名和密码都要采用字母+数字
接下来我们就可以获取代理信息了,前往获取代理,然后选择账密认证。这里选择所需的地区、子用户、粘性会话、代理协议以及我们需要的其他参数,我这里默认
生成代理信息,完成前面的设置后,我们将获得代理信息。请复制提供的详细信息并在您的代理软件中配置使用。
套餐选择一般有两个选项动态住宅代理和静态住宅代理,当然我相信很多人是不了解这两个的,这里我简单的介绍一下
-
动态住宅代理的 IP 地址处于不断变化之中,这使得它在模拟多样化用户行为、规避网站访问限制等方面表现出色,像网络爬虫、广告验证等场景常能看到它的身影。其成本往往根据使用量或时长而定,相对较为灵活,价格一般不算高,还能为用户提供较好的匿名性保护,不过在速度和稳定性上可能会有一些波动。
-
静态住宅代理有着固定不变的 IP 地址,在速度和稳定性方面更具优势,适用于对网络质量要求高的网站测试、电商监控等场景。由于其资源的特殊性,价格通常偏高,而且因为 IP 固定,相对容易被追踪,匿名性稍弱。
此外官方还设置了许多使用教程,感兴趣的小伙伴可自行查阅!
接下来让我们进入爬取实战环节。
4 爬取实战案例—(某电商网站爬取)
4.1 网站分析
这是一个海外电商平台,今天我想要获取下面图中一些信息,这里选取的关键词是:IPhone 16
接下来我们想要获取商品的:title、price、link,如何获取呢,我们可以选择点击键盘上的F12,之后我们就可以按照下面的示例,进行选中对应的块了
这里我们选择通过soup.find_all(‘div’, class_=‘product-tuple-listing’)来查找所有的商品块
每个商品块包含了:
- 商品名称:位于
<p class="product-title">
标签中。 - 商品价格:位于
<span class="lfloat product-price">
标签中。 - 商品链接:位于
<a>
标签中,包含href
属性。
上面是简单的网站结构分析,下面我们进行实战
4.2 编写代码
- 首先我们需要导入库,这里我们导入requests和bs4,这两种库
requests
是 Python 中一个简洁且功能强大的 HTTP 库,用于发送各种 HTTP 请求,使得在 Python 中进行网络请求变得非常容易。bs4
即BeautifulSoup 4
,是一个用于解析 HTML 和 XML 文档的 Python 库,能够从网页中提取所需的数据。
import requests
from bs4 import BeautifulSoup
- 其次设置请求头,如下
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}
- 模拟浏览器请求。很多网站会根据请求头来判断请求是否来自浏览器,以防止自动化脚本等的访问。这里你也可以选择多设置几个
-
之后我们确定目标 URL,这里是可以变动的,但是如果变动过大的话,后面对应的结构也得变动
-
获取页面的内容,requests.get(url, headers=headers):发送 GET 请求到 Snapdeal 网站,获取网页内容。
response.text:获取返回的 HTML 内容。BeautifulSoup(response.text, ‘html.parser’):使用
BeautifulSoup
解析 HTML 内容。'html.parser'
是解析器,BeautifulSoup
会将 HTML 内容转换成一个可以通过 Python 代码进行操作的对象。response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser')
-
定义提取商品信息的函数,这里使用find_all函数
def extract_product_info():products = []product_elements = soup.find_all('div', class_='product-tuple-listing')
这里设置products = []:初始化一个空列表,用来存储商品信息。
soup.find_all('div', class_='product-tuple-listing')
:通过BeautifulSoup
找到所有符合条件的div
元素,这些div
元素是每个商品的容器。根据页面的结构,每个商品信息都被包含在一个div
标签中,其类名为product-tuple-listing
。 -
接下来就是for循环遍历了
for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p', class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span', class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None
上面就是整个代码的核心步骤,下面我给出完整的代码
import requests
from bs4 import BeautifulSoup# 设置请求头模仿浏览器
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}# 指定 URL,这里用的是你提供的 iPhone 16 搜索页面链接
url = 'https://www.snapdeal.com/search?keyword=iPhone%2016&santizedKeyword=Sony&catId=0&categoryId=0&suggested=false&vertical=p&noOfResults=20&searchState=&clickSrc=go_header&lastKeyword=&prodCatId=&changeBackToAll=false&foundInAll=false&categoryIdSearched=&cityPageUrl=&categoryUrl=&url=&utmContent=&dealDetail=&sort=rlvncy'# 获取页面内容
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')# 提取商品的名称、价格、URL等
def extract_product_info():products = []# 找到包含产品的所有元素product_elements = soup.find_all('div', class_='product-tuple-listing')for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p',class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span',class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None# 仅当所有必要的字段都有时才记录if title and price and link:product_info = {'title': title,'price': price,'link': f'https://www.snapdeal.com{link}',}products.append(product_info)return products# 获取并打印产品信息
products = extract_product_info()
for product in products:print(f"Title: {product['title']}")print(f"Price: {product['price']}")print(f"Link: {product['link']}")print("-" * 40)
下面是运行的结果:
4.3 优化代码
接下来我们使用代理再试试,下面是官方为我们提供的关于Demo示例,从代码来看,还是十分简洁明了的
import requests
if __name__ == '__main__':
proxyip = "http://username_custom_zone_US:password@us.ipwo.net:7878"
url = "http://ipinfo.io"
proxies = {
'http': proxyip,
}
data = requests.get(url=url, proxies=proxies)
print(data.text)
接下来我们再根据提供的代码示例,从而优化我们的代码,下面是完整的代码阐述
import requests
from bs4 import BeautifulSoup# 设置请求头模仿浏览器
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}# 设置代理
proxyip = " " # 替换为你自己的ip信息
proxies = {'http': proxyip,
}# 指定 URL,这里用的是你提供的 iPhone 16 搜索页面链接
url = 'https://www.snapdeal.com/search?keyword=iPhone%2016&santizedKeyword=Sony&catId=0&categoryId=0&suggested=false&vertical=p&noOfResults=20&searchState=&clickSrc=go_header&lastKeyword=&prodCatId=&changeBackToAll=false&foundInAll=false&categoryIdSearched=&cityPageUrl=&categoryUrl=&url=&utmContent=&dealDetail=&sort=rlvncy'# 获取页面内容,使用代理,禁用 SSL 验证
response = requests.get(url, headers=headers, proxies=proxies, verify=False) # verify=False 关闭 SSL 验证
soup = BeautifulSoup(response.text, 'html.parser')# 提取商品的名称、价格、URL等
def extract_product_info():products = []# 找到包含产品的所有元素product_elements = soup.find_all('div', class_='product-tuple-listing')for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p', class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span', class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None# 仅当所有必要的字段都有时才记录if title and price and link:product_info = {'title': title,'price': price,'link': f'https://www.snapdeal.com{link}',}products.append(product_info)return products# 获取并打印产品信息
products = extract_product_info()
for product in products:print(f"Title: {product['title']}")print(f"Price: {product['price']}")print(f"Link: {product['link']}")print("-" * 40)
下面是运行结果:
5 总结
通过本文的介绍,我们可以清楚的了解并认识到代理在网络数据采集是十分重要的,针对snapdeal电商平台的商品数据采集,发现了IPWO的强大之处,使我们进行网络数据采集的时候,效率大大的提高~
相关文章:

利用 Python 爬虫进行跨境电商数据采集
1 引言2 代理IP的优势3 获取代理IP账号4 爬取实战案例---(某电商网站爬取)4.1 网站分析4.2 编写代码4.3 优化代码 5 总结 1 引言 在数字化时代,数据作为核心资源蕴含重要价值,网络爬虫成为企业洞察市场趋势、学术研究探索未知领域…...
设计模式--spring中用到的设计模式
一、单例模式(Singleton Pattern) 定义:确保一个类只有一个实例,并提供全局访问点 Spring中的应用:Spring默认将Bean配置为单例模式 案例: Component public class MySingletonBean {// Spring 默认将其…...

Qt控件中函数指针使用的最终版本,使用std::function
代码: class MyWidget : public QWidget { public:std::function<void(QResizeEvent* event)> pf_resizeEvent 0; protected:inline void resizeEvent(QResizeEvent* event) override {if (pf_resizeEvent ! 0)pf_resizeEvent(event);} };int main(int arg…...
Java中的泛型类 --为集合的学习做准备
学习目标 ● 掌握在集合中正确使用泛型 ● 了解泛型类、泛型接口、泛型方法 ● 了解泛型上下限 ● 了解基本的使用场景 1.有关泛型 1.1泛型的概念 泛型(Generics)是Java中引入的参数化类型机制,允许在定义类、接口或方法时使用类型参数&a…...

6.6.6 嵌入式SQL
文章目录 2个核心问题识别SQL语句主语言和SQL通信完整导图 2个核心问题 SQL语句嵌入高级语言需要解决的2个核心问题是:如何识别嵌入语句?如何让主语言(比如C,C语言)和SQL通信? 识别SQL语句 为了识别主语言中嵌入的SQL…...

基于C#的CANoe CLR Adapter开发指南
一、引言 CANoe 是一款广泛应用于汽车电子开发和测试的工具,它支持多种编程接口,方便开发者进行自定义扩展。CANoe CLR Adapter 允许我们使用 C# 语言与 CANoe 进行交互,充分利用 C# 的强大功能和丰富的类库。本文将详细介绍如何基于 C# 进行…...

【Qt】MVC设计模式
目录 一、搭建MVC框架 二、创建数据库连接单例类SingleDB 三、数据库业务操作类model设计 四、control层,关于model管理类设计 五、view层即为窗口UI类 一、搭建MVC框架 里面的bin、lib、database文件夹以及sqlite3.h与工程后缀为.pro文件的配置与上次发的文章…...
【手撕算法】支持向量机(SVM)从入门到实战:数学推导与核技巧揭秘
摘要 支持向量机(SVM)是机器学习中的经典算法!本文将深入解析最大间隔分类原理,手撕对偶问题推导过程,并实战实现非线性分类与图像识别。文中附《统计学习公式手册》及SVM调参指南,助力你掌握这一核心算法…...

JAVA面试常见题_基础部分_Dubbo面试题(上)
Dubbo 支持哪些协议,每种协议的应用场景,优缺点? • dubbo: 单一长连接和 NIO 异步通讯,适合大并发小数据量的服务调用,以及消费者远大于提供者。传输协议 TCP,异步,Hessian 序列化…...

CSS—隐藏元素:1分钟掌握与使用隐藏元素的方法
个人博客:haichenyi.com。感谢关注 1. 目录 1–目录2–display:none3–visibility: hidden4–opacity: 05–position: absolute;与 left: -9999px;6–z-index 和 position7–clip-path: circle(0%) 2. display:none 标签会挂载在html中,但是不会在页面上…...
二、双指针——5. 移动零
二、双指针——5. 移动零 题目描述示例示例1:示例2: 思路代码 题目描述 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操…...

论文笔记-NeurIPS2017-DropoutNet
论文笔记-NeurIPS2017-DropoutNet: Addressing Cold Start in Recommender Systems DropoutNet:解决推荐系统中的冷启动问题摘要1.引言2.前言3.方法3.1模型架构3.2冷启动训练3.3推荐 4.实验4.1实验设置4.2在CiteULike上的实验结果4.2.1 Dropout率的影响4.2.2 实验结…...

php 对接mqtt 完整版本,订阅消息,发送消息
首先打开链接如何在 PHP 项目中使用 MQTT 根据文章让所用依赖安装一下: composer require php-mqtt/client 安装之后弄一个部署 之后在工具里边可以相应链接上 接下来是代码: /**** 订阅消息* return void* throws \PhpMqtt\Client\Exceptions\Confi…...
谈谈 ES 6.8 到 7.10 的功能变迁(6)- 其他
这是 ES 7.10 相较于 ES 6.8 新增内容的最后一篇,主要涉及算分方法和同义词加载的部分。 自定义算分:script_score 2.0 Elasticsearch 7.0 引入了新一代的函数分数功能,称为 script_score 查询。这一新功能提供了一种更简单、更灵活的方式来…...

【苍穹外卖】问题笔记
【DAY1 】 1.VCS找不到 好吧,发现没安git 接着发现安全模式有问题,点开代码信任此项目 2.导入初始文件,全员爆红 好像没maven,配一个 并在设置里设置好maven 3.启用注解,见新手苍穹 pom.xml改lombok版本为1.1…...

脑机接口SSVEP 信号特征提取技术术语
目录 背景简介 1. 最小能量组合(MEC)和最大对比组合(MCC) 2. 典型相关分析(CCA) 3. 滤波器组CCA(FBCCA) 4. 二进制子带CCA(BsCCA) 5. 融合CCAÿ…...
【Veristand】Veristand 预编写教程目录
很久没有更新,最近打算出一期Veristand教程,暂时目录列成下面这个表格,如果各位有关心的遗漏的点,可以在评论区提问,我后期可以考虑添加进去,但是提前声明,太过小众的点我不会,欢迎各…...
C#光速入门的指南
以下是一份C#快速入门的指南,涵盖了基础语法、面向对象编程、输入输出、异常处理等方面,帮助你快速上手C#。 1. 开发环境搭建 要开始使用C#进行编程,你需要安装开发环境。最常用的是Visual Studio,它提供了丰富的工具和功能&…...
深入探索 STM32 微控制器:从基础到实践
一、引言 在当今的嵌入式系统领域,STM32 系列微控制器凭借其高性能、低功耗、丰富的外设以及广泛的应用场景,成为了众多开发者的首选。无论是在工业控制、智能家居、医疗设备,还是在消费电子等领域,STM32 都展现出了强大的生命力…...
Oracle性能调优(一):时间模型统计
Oracle性能调优(一):时间模型统计 时间模型统计视图时间模型统计指标时间模型统计视图 📖 DB Time的含义: DB Time表示前台会话在数据库调用中所花费的总时间,它是衡量数据库实例总负载的一个重要指标。DB Time是从实例启动时开始累计测量的,其计算方法是将所有前台会话…...

大数据学习栈记——Neo4j的安装与使用
本文介绍图数据库Neofj的安装与使用,操作系统:Ubuntu24.04,Neofj版本:2025.04.0。 Apt安装 Neofj可以进行官网安装:Neo4j Deployment Center - Graph Database & Analytics 我这里安装是添加软件源的方法 最新版…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
java_网络服务相关_gateway_nacos_feign区别联系
1. spring-cloud-starter-gateway 作用:作为微服务架构的网关,统一入口,处理所有外部请求。 核心能力: 路由转发(基于路径、服务名等)过滤器(鉴权、限流、日志、Header 处理)支持负…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

基于FPGA的PID算法学习———实现PID比例控制算法
基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容:参考网站: PID算法控制 PID即:Proportional(比例)、Integral(积分&…...

shell脚本--常见案例
1、自动备份文件或目录 2、批量重命名文件 3、查找并删除指定名称的文件: 4、批量删除文件 5、查找并替换文件内容 6、批量创建文件 7、创建文件夹并移动文件 8、在文件夹中查找文件...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
FastAPI 教程:从入门到实践
FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

DIY|Mac 搭建 ESP-IDF 开发环境及编译小智 AI
前一阵子在百度 AI 开发者大会上,看到基于小智 AI DIY 玩具的演示,感觉有点意思,想着自己也来试试。 如果只是想烧录现成的固件,乐鑫官方除了提供了 Windows 版本的 Flash 下载工具 之外,还提供了基于网页版的 ESP LA…...

SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...