当前位置: 首页 > news >正文

利用 Python 爬虫进行跨境电商数据采集

  • 1 引言
  • 2 代理IP的优势
  • 3 获取代理IP账号
  • 4 爬取实战案例---(某电商网站爬取)
    • 4.1 网站分析
    • 4.2 编写代码
    • 4.3 优化代码
  • 5 总结

1 引言

  在数字化时代,数据作为核心资源蕴含重要价值,网络爬虫成为企业洞察市场趋势、学术研究探索未知领域的重要技术手段。然而爬虫实践中常面临技术挑战,例如某电商企业通过爬虫获取竞品数据时,因高频请求触发目标平台 IP 封锁机制导致采集中断。IP 代理在网络爬虫中发挥关键作用:通过分布式请求分散访问压力,可规避单 IP 高频访问限制并突破地域内容获取限制;同时能隐藏真实 IP 地址降低法律风险,模拟多用户行为特征优化反爬虫策略,有效平衡数据获取需求与网络访问规则。这种技术工具通过突破技术限制、提升采集效率、保障数据安全等多维价值,成为网络爬虫体系中的重要组成部分。本文将介绍代理IP在网络爬虫中的重要性,并结合实际应用。

2 代理IP的优势

  1. 强大的架构性能:采用高性能分布式集群架构,具备无限并发能力,不限制并发请求,能完美满足多终端使用需求,为各类业务稳定运行提供坚实保障。

  2. 丰富的功能配置:支持多种代理认证模式,同时兼容 HTTP、HTTPS 以及 socks5 协议。还提供 API 接口调用与可视化监控统计功能,为用户业务开展提供极大便利。

  3. 优质的资源保障:拥有千万级优质住宅代理 IP 池,实时更新来自 200 多个国家的真实家庭住宅 IP。这些 IP 具有高效率、低延迟的特点,且能提供超高私密性,有力保障数据安全。

  4. 个性化的定制服务:兼顾个人和企业用户的专属需求,支持根据业务场景定制独享 IP。 这个团队提供 24 小时服务与技术支持,全方位满足用户多样化业务需求。

3 获取代理IP账号

  这里我们可以选择进入官网网站,获取账号

image-20250226083712407

  在测试前,我们记得实名认证一下,这样我们就可以享受500M测试的额度了,接下来我们简单演示一下使用账密认证的形式获取代理~


  在获取代理前,我们首先要创建一下子账号,这里的用户名和密码都要采用字母+数字

image-20250226085533431

  接下来我们就可以获取代理信息了,前往获取代理,然后选择账密认证。这里选择所需的地区、子用户、粘性会话、代理协议以及我们需要的其他参数,我这里默认

image-20250226085616542

 生成代理信息,完成前面的设置后,我们将获得代理信息。请复制提供的详细信息并在您的代理软件中配置使用。

image-20250226085749886

 套餐选择一般有两个选项动态住宅代理静态住宅代理,当然我相信很多人是不了解这两个的,这里我简单的介绍一下

  • 动态住宅代理的 IP 地址处于不断变化之中,这使得它在模拟多样化用户行为、规避网站访问限制等方面表现出色,像网络爬虫、广告验证等场景常能看到它的身影。其成本往往根据使用量或时长而定,相对较为灵活,价格一般不算高,还能为用户提供较好的匿名性保护,不过在速度和稳定性上可能会有一些波动。

  • 静态住宅代理有着固定不变的 IP 地址,在速度和稳定性方面更具优势,适用于对网络质量要求高的网站测试、电商监控等场景。由于其资源的特殊性,价格通常偏高,而且因为 IP 固定,相对容易被追踪,匿名性稍弱。

 此外官方还设置了许多使用教程,感兴趣的小伙伴可自行查阅!

 接下来让我们进入爬取实战环节。

4 爬取实战案例—(某电商网站爬取)

4.1 网站分析

 这是一个海外电商平台,今天我想要获取下面图中一些信息,这里选取的关键词是:IPhone 16

image-20250226103213908

 接下来我们想要获取商品的:title、price、link,如何获取呢,我们可以选择点击键盘上的F12,之后我们就可以按照下面的示例,进行选中对应的块了

image-20250226103523205

 这里我们选择通过soup.find_all(‘div’, class_=‘product-tuple-listing’)来查找所有的商品块

image-20250226103816035

 每个商品块包含了:

  • 商品名称:位于 <p class="product-title"> 标签中。
  • 商品价格:位于 <span class="lfloat product-price"> 标签中。
  • 商品链接:位于 <a> 标签中,包含 href 属性。

 上面是简单的网站结构分析,下面我们进行实战


4.2 编写代码

  1. 首先我们需要导入库,这里我们导入requests和bs4,这两种库
    • requests 是 Python 中一个简洁且功能强大的 HTTP 库,用于发送各种 HTTP 请求,使得在 Python 中进行网络请求变得非常容易。
    • bs4BeautifulSoup 4,是一个用于解析 HTML 和 XML 文档的 Python 库,能够从网页中提取所需的数据。
import requests
from bs4 import BeautifulSoup
  1. 其次设置请求头,如下
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}
  1. 模拟浏览器请求。很多网站会根据请求头来判断请求是否来自浏览器,以防止自动化脚本等的访问。这里你也可以选择多设置几个

image-20250226104531453

  1. 之后我们确定目标 URL,这里是可以变动的,但是如果变动过大的话,后面对应的结构也得变动

  2. 获取页面的内容,requests.get(url, headers=headers):发送 GET 请求到 Snapdeal 网站,获取网页内容。

    response.text:获取返回的 HTML 内容。BeautifulSoup(response.text, ‘html.parser’):使用 BeautifulSoup 解析 HTML 内容。'html.parser' 是解析器,BeautifulSoup 会将 HTML 内容转换成一个可以通过 Python 代码进行操作的对象。

    response = requests.get(url, headers=headers) soup = BeautifulSoup(response.text, 'html.parser')

  3. 定义提取商品信息的函数,这里使用find_all函数

    def extract_product_info():products = []product_elements = soup.find_all('div', class_='product-tuple-listing')
    

    这里设置products = []:初始化一个空列表,用来存储商品信息。

    soup.find_all('div', class_='product-tuple-listing'):通过 BeautifulSoup 找到所有符合条件的 div 元素,这些 div 元素是每个商品的容器。根据页面的结构,每个商品信息都被包含在一个 div 标签中,其类名为 product-tuple-listing

  4. 接下来就是for循环遍历了

for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p', class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span', class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None

 上面就是整个代码的核心步骤,下面我给出完整的代码

import requests
from bs4 import BeautifulSoup# 设置请求头模仿浏览器
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}# 指定 URL,这里用的是你提供的 iPhone 16 搜索页面链接
url = 'https://www.snapdeal.com/search?keyword=iPhone%2016&santizedKeyword=Sony&catId=0&categoryId=0&suggested=false&vertical=p&noOfResults=20&searchState=&clickSrc=go_header&lastKeyword=&prodCatId=&changeBackToAll=false&foundInAll=false&categoryIdSearched=&cityPageUrl=&categoryUrl=&url=&utmContent=&dealDetail=&sort=rlvncy'# 获取页面内容
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.text, 'html.parser')# 提取商品的名称、价格、URL等
def extract_product_info():products = []# 找到包含产品的所有元素product_elements = soup.find_all('div', class_='product-tuple-listing')for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p',class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span',class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None# 仅当所有必要的字段都有时才记录if title and price and link:product_info = {'title': title,'price': price,'link': f'https://www.snapdeal.com{link}',}products.append(product_info)return products# 获取并打印产品信息
products = extract_product_info()
for product in products:print(f"Title: {product['title']}")print(f"Price: {product['price']}")print(f"Link: {product['link']}")print("-" * 40)

 下面是运行的结果:

image-20250226114536449

4.3 优化代码

 接下来我们使用代理再试试,下面是官方为我们提供的关于Demo示例,从代码来看,还是十分简洁明了的

import requests
if __name__ == '__main__':
proxyip = "http://username_custom_zone_US:password@us.ipwo.net:7878"
url = "http://ipinfo.io"
proxies = {
'http': proxyip,
}
data = requests.get(url=url, proxies=proxies)
print(data.text)

 接下来我们再根据提供的代码示例,从而优化我们的代码,下面是完整的代码阐述

import requests
from bs4 import BeautifulSoup# 设置请求头模仿浏览器
headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
}# 设置代理
proxyip = " "  # 替换为你自己的ip信息
proxies = {'http': proxyip,
}# 指定 URL,这里用的是你提供的 iPhone 16 搜索页面链接
url = 'https://www.snapdeal.com/search?keyword=iPhone%2016&santizedKeyword=Sony&catId=0&categoryId=0&suggested=false&vertical=p&noOfResults=20&searchState=&clickSrc=go_header&lastKeyword=&prodCatId=&changeBackToAll=false&foundInAll=false&categoryIdSearched=&cityPageUrl=&categoryUrl=&url=&utmContent=&dealDetail=&sort=rlvncy'# 获取页面内容,使用代理,禁用 SSL 验证
response = requests.get(url, headers=headers, proxies=proxies, verify=False)  # verify=False 关闭 SSL 验证
soup = BeautifulSoup(response.text, 'html.parser')# 提取商品的名称、价格、URL等
def extract_product_info():products = []# 找到包含产品的所有元素product_elements = soup.find_all('div', class_='product-tuple-listing')for product in product_elements:title = product.find('p', class_='product-title').text.strip() if product.find('p', class_='product-title') else Noneprice = product.find('span', class_='lfloat product-price').text.strip() if product.find('span', class_='lfloat product-price') else Nonelink = product.find('a', href=True)['href'] if product.find('a', href=True) else None# 仅当所有必要的字段都有时才记录if title and price and link:product_info = {'title': title,'price': price,'link': f'https://www.snapdeal.com{link}',}products.append(product_info)return products# 获取并打印产品信息
products = extract_product_info()
for product in products:print(f"Title: {product['title']}")print(f"Price: {product['price']}")print(f"Link: {product['link']}")print("-" * 40)

 下面是运行结果:

image-20250226114504892

5 总结

  通过本文的介绍,我们可以清楚的了解并认识到代理在网络数据采集是十分重要的,针对snapdeal电商平台的商品数据采集,发现了IPWO的强大之处,使我们进行网络数据采集的时候,效率大大的提高~

相关文章:

利用 Python 爬虫进行跨境电商数据采集

1 引言2 代理IP的优势3 获取代理IP账号4 爬取实战案例---&#xff08;某电商网站爬取&#xff09;4.1 网站分析4.2 编写代码4.3 优化代码 5 总结 1 引言 在数字化时代&#xff0c;数据作为核心资源蕴含重要价值&#xff0c;网络爬虫成为企业洞察市场趋势、学术研究探索未知领域…...

设计模式--spring中用到的设计模式

一、单例模式&#xff08;Singleton Pattern&#xff09; 定义&#xff1a;确保一个类只有一个实例&#xff0c;并提供全局访问点 Spring中的应用&#xff1a;Spring默认将Bean配置为单例模式 案例&#xff1a; Component public class MySingletonBean {// Spring 默认将其…...

Qt控件中函数指针使用的最终版本,使用std::function

代码&#xff1a; class MyWidget : public QWidget { public:std::function<void(QResizeEvent* event)> pf_resizeEvent 0; protected:inline void resizeEvent(QResizeEvent* event) override {if (pf_resizeEvent ! 0)pf_resizeEvent(event);} };int main(int arg…...

Java中的泛型类 --为集合的学习做准备

学习目标 ● 掌握在集合中正确使用泛型 ● 了解泛型类、泛型接口、泛型方法 ● 了解泛型上下限 ● 了解基本的使用场景 1.有关泛型 1.1泛型的概念 泛型&#xff08;Generics&#xff09;是Java中引入的参数化类型机制&#xff0c;允许在定义类、接口或方法时使用类型参数&a…...

6.6.6 嵌入式SQL

文章目录 2个核心问题识别SQL语句主语言和SQL通信完整导图 2个核心问题 SQL语句嵌入高级语言需要解决的2个核心问题是&#xff1a;如何识别嵌入语句&#xff1f;如何让主语言&#xff08;比如C,C语言&#xff09;和SQL通信&#xff1f; 识别SQL语句 为了识别主语言中嵌入的SQL…...

基于C#的CANoe CLR Adapter开发指南

一、引言 CANoe 是一款广泛应用于汽车电子开发和测试的工具&#xff0c;它支持多种编程接口&#xff0c;方便开发者进行自定义扩展。CANoe CLR Adapter 允许我们使用 C# 语言与 CANoe 进行交互&#xff0c;充分利用 C# 的强大功能和丰富的类库。本文将详细介绍如何基于 C# 进行…...

【Qt】MVC设计模式

目录 一、搭建MVC框架 二、创建数据库连接单例类SingleDB 三、数据库业务操作类model设计 四、control层&#xff0c;关于model管理类设计 五、view层即为窗口UI类 一、搭建MVC框架 里面的bin、lib、database文件夹以及sqlite3.h与工程后缀为.pro文件的配置与上次发的文章…...

【手撕算法】支持向量机(SVM)从入门到实战:数学推导与核技巧揭秘

摘要 支持向量机&#xff08;SVM&#xff09;是机器学习中的经典算法&#xff01;本文将深入解析最大间隔分类原理&#xff0c;手撕对偶问题推导过程&#xff0c;并实战实现非线性分类与图像识别。文中附《统计学习公式手册》及SVM调参指南&#xff0c;助力你掌握这一核心算法…...

JAVA面试常见题_基础部分_Dubbo面试题(上)

Dubbo 支持哪些协议&#xff0c;每种协议的应用场景&#xff0c;优缺点&#xff1f; • dubbo&#xff1a; 单一长连接和 NIO 异步通讯&#xff0c;适合大并发小数据量的服务调用&#xff0c;以及消费者远大于提供者。传输协议 TCP&#xff0c;异步&#xff0c;Hessian 序列化…...

CSS—隐藏元素:1分钟掌握与使用隐藏元素的方法

个人博客&#xff1a;haichenyi.com。感谢关注 1. 目录 1–目录2–display:none3–visibility: hidden4–opacity: 05–position: absolute;与 left: -9999px;6–z-index 和 position7–clip-path: circle(0%) 2. display:none 标签会挂载在html中&#xff0c;但是不会在页面上…...

二、双指针——5. 移动零

二、双指针——5. 移动零 题目描述示例示例1&#xff1a;示例2&#xff1a; 思路代码 题目描述 给定一个数组 nums&#xff0c;编写一个函数将所有 0 移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 请注意 &#xff0c;必须在不复制数组的情况下原地对数组进行操…...

论文笔记-NeurIPS2017-DropoutNet

论文笔记-NeurIPS2017-DropoutNet: Addressing Cold Start in Recommender Systems DropoutNet&#xff1a;解决推荐系统中的冷启动问题摘要1.引言2.前言3.方法3.1模型架构3.2冷启动训练3.3推荐 4.实验4.1实验设置4.2在CiteULike上的实验结果4.2.1 Dropout率的影响4.2.2 实验结…...

php 对接mqtt 完整版本,订阅消息,发送消息

首先打开链接如何在 PHP 项目中使用 MQTT 根据文章让所用依赖安装一下&#xff1a; composer require php-mqtt/client 安装之后弄一个部署 之后在工具里边可以相应链接上 接下来是代码&#xff1a; /**** 订阅消息* return void* throws \PhpMqtt\Client\Exceptions\Confi…...

谈谈 ES 6.8 到 7.10 的功能变迁(6)- 其他

这是 ES 7.10 相较于 ES 6.8 新增内容的最后一篇&#xff0c;主要涉及算分方法和同义词加载的部分。 自定义算分&#xff1a;script_score 2.0 Elasticsearch 7.0 引入了新一代的函数分数功能&#xff0c;称为 script_score 查询。这一新功能提供了一种更简单、更灵活的方式来…...

【苍穹外卖】问题笔记

【DAY1 】 1.VCS找不到 好吧&#xff0c;发现没安git 接着发现安全模式有问题&#xff0c;点开代码信任此项目 2.导入初始文件&#xff0c;全员爆红 好像没maven&#xff0c;配一个 并在设置里设置好maven 3.启用注解&#xff0c;见新手苍穹 pom.xml改lombok版本为1.1…...

脑机接口SSVEP 信号特征提取技术术语

目录 背景简介 1. 最小能量组合&#xff08;MEC&#xff09;和最大对比组合&#xff08;MCC&#xff09; 2. 典型相关分析&#xff08;CCA&#xff09; 3. 滤波器组CCA&#xff08;FBCCA&#xff09; 4. 二进制子带CCA&#xff08;BsCCA&#xff09; 5. 融合CCA&#xff…...

【Veristand】Veristand 预编写教程目录

很久没有更新&#xff0c;最近打算出一期Veristand教程&#xff0c;暂时目录列成下面这个表格&#xff0c;如果各位有关心的遗漏的点&#xff0c;可以在评论区提问&#xff0c;我后期可以考虑添加进去&#xff0c;但是提前声明&#xff0c;太过小众的点我不会&#xff0c;欢迎各…...

C#光速入门的指南

以下是一份C#快速入门的指南&#xff0c;涵盖了基础语法、面向对象编程、输入输出、异常处理等方面&#xff0c;帮助你快速上手C#。 1. 开发环境搭建 要开始使用C#进行编程&#xff0c;你需要安装开发环境。最常用的是Visual Studio&#xff0c;它提供了丰富的工具和功能&…...

深入探索 STM32 微控制器:从基础到实践

一、引言 在当今的嵌入式系统领域&#xff0c;STM32 系列微控制器凭借其高性能、低功耗、丰富的外设以及广泛的应用场景&#xff0c;成为了众多开发者的首选。无论是在工业控制、智能家居、医疗设备&#xff0c;还是在消费电子等领域&#xff0c;STM32 都展现出了强大的生命力…...

Oracle性能调优(一):时间模型统计

Oracle性能调优(一):时间模型统计 时间模型统计视图时间模型统计指标时间模型统计视图 📖 DB Time的含义: DB Time表示前台会话在数据库调用中所花费的总时间,它是衡量数据库实例总负载的一个重要指标。DB Time是从实例启动时开始累计测量的,其计算方法是将所有前台会话…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

SkyWalking 10.2.0 SWCK 配置过程

SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外&#xff0c;K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案&#xff0c;全安装在K8S群集中。 具体可参…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试

作者&#xff1a;Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位&#xff1a;中南大学地球科学与信息物理学院论文标题&#xff1a;BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接&#xff1a;https://arxiv.…...

UE5 学习系列(三)创建和移动物体

这篇博客是该系列的第三篇&#xff0c;是在之前两篇博客的基础上展开&#xff0c;主要介绍如何在操作界面中创建和拖动物体&#xff0c;这篇博客跟随的视频链接如下&#xff1a; B 站视频&#xff1a;s03-创建和移动物体 如果你不打算开之前的博客并且对UE5 比较熟的话按照以…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

C# 求圆面积的程序(Program to find area of a circle)

给定半径r&#xff0c;求圆的面积。圆的面积应精确到小数点后5位。 例子&#xff1a; 输入&#xff1a;r 5 输出&#xff1a;78.53982 解释&#xff1a;由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982&#xff0c;因为我们只保留小数点后 5 位数字。 输…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...