【手撕算法】支持向量机(SVM)从入门到实战:数学推导与核技巧揭秘
摘要
支持向量机(SVM)是机器学习中的经典算法!本文将深入解析最大间隔分类原理,手撕对偶问题推导过程,并实战实现非线性分类与图像识别。文中附《统计学习公式手册》及SVM调参指南,助力你掌握这一核心算法!
目录
目录
摘要
目录
一、算法核心思想
二、数学原理详解
2.1 拉格朗日对偶问题
2.2 核技巧(Kernel Trick)
三、Python代码实战
3.1 线性SVM分类(手写实现)
3.2 非线性分类可视化
四、算法优化技巧
4.1 参数调优指南
4.2 多分类扩展
五、常见问题解答
Q1:如何处理类别不平衡?
Q2:SVM vs 神经网络?
六、结语与资源
附录:其他关键概念
软间隔SVM
一、万能公式:3步让AI听懂人话
第1步:角色锚定——给AI穿“职业装”
第2步:场景拆解——给AI装“GPS定位”
第3步:输出控制——给AI装“方向盘”
二、实战案例库:小白抄作业专用
案例1:职场周报生成器
案例2:宝妈时间管理
案例3:短视频爆款脚本
三、高阶技巧:让AI自我进化
1. 反向验证法
2. 文风迁移术
3. 多模态联动
结语:AI不是魔法,而是你的镜子
一、算法核心思想
SVM通过寻找最大间隔超平面实现分类,核心数学表达为:
满足约束:
📌 关联阅读:《逻辑回归算法精讲》
二、数学原理详解
2.1 拉格朗日对偶问题
引入拉格朗日乘子 :
对 w 和 b 求偏导得:
2.2 核技巧(Kernel Trick)
将内积替换为核函数:
常用核函数:
-
高斯核:
-
多项式核:
三、Python代码实战
3.1 线性SVM分类(手写实现)
import numpy as np
from cvxopt import matrix, solversclass SVM:def __init__(self, kernel='linear', C=1.0, gamma=0.1):self.kernel = kernelself.C = Cself.gamma = gammadef fit(self, X, y):n_samples, n_features = X.shape# 计算核矩阵K = self._compute_kernel(X, X)# 构建QP问题参数P = matrix(np.outer(y, y) * K)q = matrix(-np.ones(n_samples))A = matrix(y.reshape(1, -1).astype(np.double))b = matrix(0.0)G = matrix(np.vstack((-np.eye(n_samples), np.eye(n_samples))))h = matrix(np.hstack((np.zeros(n_samples), np.ones(n_samples) * self.C)))# 求解二次规划solution = solvers.qp(P, q, G, h, A, b)self.alpha = np.ravel(solution['x'])# 计算支持向量sv = self.alpha > 1e-5self.sv_alpha = self.alpha[sv]self.sv_X = X[sv]self.sv_y = y[sv]# 计算偏置bself.b = np.mean(self.sv_y - np.sum(self.sv_alpha * self.sv_y * self._compute_kernel(self.sv_X, self.sv_X), axis=1))def predict(self, X):return np.sign(np.sum(self.sv_alpha * self.sv_y * self._compute_kernel(self.sv_X, X), axis=1) + self.b)
3.2 非线性分类可视化
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt# 生成非线性数据集
X, y = make_moons(n_samples=100, noise=0.15, random_state=42)
y = np.where(y == 0, -1, 1)# 训练SVM模型
model = SVM(kernel='rbf', gamma=0.5, C=1.0)
model.fit(X, y)# 绘制决策边界
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),np.arange(y_min, y_max, 0.02))Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3)
plt.scatter(X[:,0], X[:,1], c=y, edgecolors='k')
四、算法优化技巧
4.1 参数调优指南
参数 | 作用 | 推荐设置方法 |
---|---|---|
C | 惩罚系数 | 网格搜索(0.1, 1, 10) |
gamma | 核函数带宽 | 根据特征标准差调整 |
kernel | 核函数类型 | 数据线性可分时选linear |
4.2 多分类扩展
通过一对多(OvR)策略实现多分类:
(text{构建K个二分类器,第i个分类器区分第i类与其他类}
五、常见问题解答
Q1:如何处理类别不平衡?
-
调整类别权重
-
使用SMOTE过采样技术
Q2:SVM vs 神经网络?
算法 | 优点 | 适用场景 |
---|---|---|
SVM | 小样本效果好 | 高维数据分类 |
神经网络 | 大数据表现优 | 复杂模式识别 |
六、结语与资源
通过本文您已掌握:
🔹 SVM数学推导 🔹 手写实现核心代码 🔹 非线性分类实战
相关文章:
【手撕算法】支持向量机(SVM)从入门到实战:数学推导与核技巧揭秘
摘要 支持向量机(SVM)是机器学习中的经典算法!本文将深入解析最大间隔分类原理,手撕对偶问题推导过程,并实战实现非线性分类与图像识别。文中附《统计学习公式手册》及SVM调参指南,助力你掌握这一核心算法…...

JAVA面试常见题_基础部分_Dubbo面试题(上)
Dubbo 支持哪些协议,每种协议的应用场景,优缺点? • dubbo: 单一长连接和 NIO 异步通讯,适合大并发小数据量的服务调用,以及消费者远大于提供者。传输协议 TCP,异步,Hessian 序列化…...

CSS—隐藏元素:1分钟掌握与使用隐藏元素的方法
个人博客:haichenyi.com。感谢关注 1. 目录 1–目录2–display:none3–visibility: hidden4–opacity: 05–position: absolute;与 left: -9999px;6–z-index 和 position7–clip-path: circle(0%) 2. display:none 标签会挂载在html中,但是不会在页面上…...
二、双指针——5. 移动零
二、双指针——5. 移动零 题目描述示例示例1:示例2: 思路代码 题目描述 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操…...

论文笔记-NeurIPS2017-DropoutNet
论文笔记-NeurIPS2017-DropoutNet: Addressing Cold Start in Recommender Systems DropoutNet:解决推荐系统中的冷启动问题摘要1.引言2.前言3.方法3.1模型架构3.2冷启动训练3.3推荐 4.实验4.1实验设置4.2在CiteULike上的实验结果4.2.1 Dropout率的影响4.2.2 实验结…...

php 对接mqtt 完整版本,订阅消息,发送消息
首先打开链接如何在 PHP 项目中使用 MQTT 根据文章让所用依赖安装一下: composer require php-mqtt/client 安装之后弄一个部署 之后在工具里边可以相应链接上 接下来是代码: /**** 订阅消息* return void* throws \PhpMqtt\Client\Exceptions\Confi…...
谈谈 ES 6.8 到 7.10 的功能变迁(6)- 其他
这是 ES 7.10 相较于 ES 6.8 新增内容的最后一篇,主要涉及算分方法和同义词加载的部分。 自定义算分:script_score 2.0 Elasticsearch 7.0 引入了新一代的函数分数功能,称为 script_score 查询。这一新功能提供了一种更简单、更灵活的方式来…...

【苍穹外卖】问题笔记
【DAY1 】 1.VCS找不到 好吧,发现没安git 接着发现安全模式有问题,点开代码信任此项目 2.导入初始文件,全员爆红 好像没maven,配一个 并在设置里设置好maven 3.启用注解,见新手苍穹 pom.xml改lombok版本为1.1…...

脑机接口SSVEP 信号特征提取技术术语
目录 背景简介 1. 最小能量组合(MEC)和最大对比组合(MCC) 2. 典型相关分析(CCA) 3. 滤波器组CCA(FBCCA) 4. 二进制子带CCA(BsCCA) 5. 融合CCAÿ…...
【Veristand】Veristand 预编写教程目录
很久没有更新,最近打算出一期Veristand教程,暂时目录列成下面这个表格,如果各位有关心的遗漏的点,可以在评论区提问,我后期可以考虑添加进去,但是提前声明,太过小众的点我不会,欢迎各…...
C#光速入门的指南
以下是一份C#快速入门的指南,涵盖了基础语法、面向对象编程、输入输出、异常处理等方面,帮助你快速上手C#。 1. 开发环境搭建 要开始使用C#进行编程,你需要安装开发环境。最常用的是Visual Studio,它提供了丰富的工具和功能&…...
深入探索 STM32 微控制器:从基础到实践
一、引言 在当今的嵌入式系统领域,STM32 系列微控制器凭借其高性能、低功耗、丰富的外设以及广泛的应用场景,成为了众多开发者的首选。无论是在工业控制、智能家居、医疗设备,还是在消费电子等领域,STM32 都展现出了强大的生命力…...
Oracle性能调优(一):时间模型统计
Oracle性能调优(一):时间模型统计 时间模型统计视图时间模型统计指标时间模型统计视图 📖 DB Time的含义: DB Time表示前台会话在数据库调用中所花费的总时间,它是衡量数据库实例总负载的一个重要指标。DB Time是从实例启动时开始累计测量的,其计算方法是将所有前台会话…...
前端Npm面试题及参考答案
目录 npm 是什么?它的主要作用是什么? npm 包管理工具与 Yarn 有何不同? npm 的 package.json 文件有哪些重要字段? 什么是 npm 依赖?如何在项目中安装、更新和移除依赖? npm 的 node_modules 目录是什么?它的作用是什么? 什么是 npm 脚本?如何在 package.json 中…...

记一次线上Tomcat服务内存溢出的问题处理
背景:JavaWeb项目部署在Tomcat服务器上,服务器用的Windows。 问题表现:系统出现偶发性无法访问(隔几天就会在早上无法访问) Tomcat的日志catalina中,有如下报错信息。 java.lang.OutOfMemoryError: GC ov…...

nist关于rsa中p,q的要求
NIST.FIPS.186-4 美国国家标准与技术研究院(National Institute of Standards and Technology,NIST) FIPS,美国联邦信息处理标准(Federal Information Processing Standard) Criteria for IFC Key Pairs B.3.1 Crite…...

Vue3项目如何使用TailWind CSS保姆级教程
一、简单介绍一下TailWind CSS TailWind CSS是一个实用工具优先的 CSS 框架,它通过提供大量的原子化 CSS 类,允许开发者通过组合这些类来快速构建界面,而无需编写额外的 CSS 文件。这种设计理念使得开发过程更加直观和高效ÿ…...

NO.22十六届蓝桥杯备战|一维数组|七道练习|冒泡排序(C++)
B2093 查找特定的值 - 洛谷 题⽬要求下标是从0开始的,和数组的下标是吻合的,存放数据应该从下标0开始n的取值范围是1~10000数组中存放的值的绝对值不超10000,说明int类型就⾜够了找到了输出下标,找不到要输出-1,这⼀点…...
Mysql的索引失效
MySQL 的索引失效指的是:尽管在表上建立了索引,但在某些查询场景下,MySQL 优化器却没有利用这些索引,从而导致查询走了全表扫描,性能大大降低。下面详细说明几种常见的导致索引失效的情况及其原因: 1. 对索…...

现代前端框架渲染机制深度解析:虚拟DOM到编译时优化
引言:前端框架的性能进化论 TikTok Web将React 18迁移至Vue 3后,点击响应延迟降低42%,内存占用减少35%。Shopify采用Svelte重构核心交互模块,首帧渲染速度提升580%。Discord在Next.js 14中启用React Server Components后…...

微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表
##鸿蒙核心技术##运动开发##Sensor Service Kit(传感器服务)# 前言 在运动类应用中,运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据,如配速、距离、卡路里消耗等,用户可以更清晰…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...

视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
Kafka主题运维全指南:从基础配置到故障处理
#作者:张桐瑞 文章目录 主题日常管理1. 修改主题分区。2. 修改主题级别参数。3. 变更副本数。4. 修改主题限速。5.主题分区迁移。6. 常见主题错误处理常见错误1:主题删除失败。常见错误2:__consumer_offsets占用太多的磁盘。 主题日常管理 …...