当前位置: 首页 > news >正文

【手撕算法】K-Means聚类全解析:从数学推导到图像分割实战

摘要

聚类算法是探索数据内在结构的利器!本文手撕K-Means核心公式,结合Python代码实现与图像分割案例,详解:


✅ 欧氏距离计算 ✅ 簇中心迭代更新 ✅ 肘部法则优化
 


目录

摘要

目录

一、算法核心思想

二、数学原理详解

2.1 初始化阶段

2.2 迭代更新公式

2.3 收敛条件

三、Python代码实战

3.1 手写K-Means核心逻辑

3.2 图像分割实战案例

四、算法优化技巧

4.1 K-Means++初始化

4.2 肘部法则确定K值

五、常见问题解答

Q1:如何处理不同量纲的特征?

Q2:算法陷入局部最优怎么办?

六、结语与资源

附录:其他聚类算法


一、算法核心思想

K-Means通过最小化簇内平方和实现聚类,目标函数为:
( J = \sum_{i=1}^k \sum_{x \in C_i} |x - \mu_i|^2 )
其中:

  • ( k ):预设簇数量

  • (mu_i ):第i个簇的中心点

  •  C_i:第i个簇的数据集合


二、数学原理详解

2.1 初始化阶段

随机选择k个初始质心:
( mu_1^{(0)}, \mu_2^{(0)}, ..., \mu_k^{(0)} )

2.2 迭代更新公式

  1. 分配样本到最近簇
    ( C_i^{(t)} = { x : |x - \mu_i^{(t)}|^2 \leq |x - \mu_j^{(t)}|^2 \ \forall j } )

  2. 更新簇中心
    (mu_i^{(t+1)} = \frac{1}{|C_i^{(t)}|} \sum_{x \in C_i^{(t)}} x )

2.3 收敛条件

当簇中心变化量小于阈值时停止:
( max_i | mu_i^{(t+1)} - \mu_i^{(t)}| < \epsilon )


三、Python代码实战

3.1 手写K-Means核心逻辑

import numpy as npclass KMeans:def __init__(self, n_clusters=3, max_iter=300):self.n_clusters = n_clusters  # 簇数量self.max_iter = max_iter      # 最大迭代次数def fit(self, X):# 1. 随机初始化质心n_samples, n_features = X.shapeself.centroids = X[np.random.choice(n_samples, self.n_clusters, replace=False)]for _ in range(self.max_iter):# 2. 计算样本到质心的距离distances = np.sqrt(((X - self.centroids[:, np.newaxis])**2).sum(axis=2))# 3. 分配样本到最近簇self.labels = np.argmin(distances, axis=0)# 4. 更新质心new_centroids = np.array([X[self.labels == i].mean(axis=0) for i in range(self.n_clusters)])# 5. 检查收敛if np.allclose(self.centroids, new_centroids):breakself.centroids = new_centroidsreturn self

3.2 图像分割实战案例

from sklearn.datasets import load_sample_image
import matplotlib.pyplot as plt# 加载示例图片
china = load_sample_image("china.jpg")
X = china.reshape(-1, 3) / 255.0  # 归一化像素值# 使用K-Means进行颜色量化
kmeans = KMeans(n_clusters=16).fit(X)
compressed_colors = kmeans.centroids[kmeans.labels].reshape(china.shape)# 可视化对比
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12,6))
ax1.imshow(china)
ax2.imshow(compressed_colors)
ax1.set_title("原始图像(16.7万色)")
ax2.set_title("压缩后图像(16色)")

四、算法优化技巧

4.1 K-Means++初始化

初始化方法优点实现步骤
随机初始化简单快速直接随机选取样本
K-Means++减少局部最优按概率分布选择初始点

4.2 肘部法则确定K值

# 计算不同K值的SSE
sse = []
for k in range(1, 10):kmeans = KMeans(n_clusters=k).fit(X)sse.append(np.sum((X - kmeans.centroids[kmeans.labels])**2))# 绘制肘部曲线
plt.plot(range(1,10), sse, 'bx-')
plt.xlabel('K值')
plt.ylabel('SSE')

五、常见问题解答

Q1:如何处理不同量纲的特征?

解决方案:使用标准化预处理
( x' = \frac{x - \mu}{\sigma} )

Q2:算法陷入局部最优怎么办?

  • 多次随机初始化取最优结果

  • 增加max_iter参数值

  • 改用K-Means++初始化


六、结语与资源

通过本文您已掌握:
🔹 K-Means数学本质 🔹 手写实现关键代码 🔹 图像分割高级应用


附录:其他聚类算法

算法名称适用场景核心公式
DBSCAN任意形状簇密度可达性
层次聚类树状结构距离矩阵合并
GMM概率分布EM算法迭代

相关文章:

【手撕算法】K-Means聚类全解析:从数学推导到图像分割实战

摘要 聚类算法是探索数据内在结构的利器&#xff01;本文手撕K-Means核心公式&#xff0c;结合Python代码实现与图像分割案例&#xff0c;详解&#xff1a; ✅ 欧氏距离计算 ✅ 簇中心迭代更新 ✅ 肘部法则优化 目录 摘要 目录 一、算法核心思想 二、数学原理详解 2.1 …...

【SQL技术】不同数据库引擎 SQL 优化方案剖析

一、引言 在数据处理和分析的世界里&#xff0c;SQL 是不可或缺的工具。不同的数据库系统&#xff0c;如 MySQL、PostgreSQL&#xff08;PG&#xff09;、Doris 和 Hive&#xff0c;在架构和性能特点上存在差异&#xff0c;因此针对它们的 SQL 优化策略也各有不同。这些数据库…...

RabbitMQ系列(二)基本概念之Publisher

在 RabbitMQ 中&#xff0c;Publisher&#xff08;发布者&#xff09; 是负责向 RabbitMQ 服务器发送消息的客户端角色&#xff0c;通常被称为“生产者”。以下是其核心功能与工作机制的详细解析&#xff1a; 一、核心定义与作用 消息发送者 Publisher 将消息发送到 RabbitMQ 的…...

OAK相机的抗震性测试

在工业环境中&#xff0c;双目视觉相机必须具备与工作环境同等的坚固性。鉴于部分客户会将我们的相机应用于恶劣环境&#xff08;例如安装在重型机械上&#xff09;&#xff0c;我们依据EN 60068-2-6:2008标准对相机进行了振动耐受性测试。 测试涉及的相机型号包括&#xff1a…...

2025最新Nginx高频面试题

2025最新Nginx高频面试题 摘要&#xff1a;本文整理了2025年企业高频Nginx面试题&#xff0c;覆盖核心原理、配置优化、安全防护及云原生场景实战&#xff0c;助你轻松应对技术面试&#xff01; 核心原理篇 1. Nginx的Master-Worker架构优势是什么&#xff1f; 答案&#xf…...

【Kubernetes】API server 限流 之 maxinflight.go

这个文件实现了一个基于信号量(Channel)的简单限流器。 基础知识 总共有四种channel 带缓冲的channel nonMutatingChan、mutatingChan 都是带缓冲的channel &#xff0c;这类channel 的特点是&#xff1a; 这允许最多 mutatingLimit /nonMutatingLimit 个请求同时获取令牌并执…...

推荐算法工程师的技术图谱和学习路径

推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下: 一、技术图谱 推荐算法工程师需要掌握的技术栈主要分为以下几个方面: 数学基础: 微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论…...

Milvus高性能向量数据库与大模型结合

Milvus | 高性能向量数据库&#xff0c;为规模而构建Milvus 是一个为 GenAI 应用构建的开源向量数据库。使用 pip 安装&#xff0c;执行高速搜索&#xff0c;并扩展到数十亿个向量。https://milvus.io/zh Milvus 是什么&#xff1f; Milvus 是一种高性能、高扩展性的向量数据…...

轮式机器人在复杂地形中如何选择合适的全局路径规划算法?

已思考完成 收起 嗯&#xff0c;用户问的是轮式机器人在复杂地形中如何选择合适的全局路径规划算法。首先&#xff0c;我需要理解复杂地形可能带来的挑战&#xff0c;比如崎岖的路面、动态障碍物、非结构化环境等等。轮式机器人在这里的运动控制需要考虑地形通过性、稳定性&…...

Metal学习笔记九:光照基础

光和阴影是使场景流行的重要要求。通过一些着色器艺术&#xff0c;您可以突出重要的对象、描述天气和一天中的时间并设置场景的气氛。即使您的场景由卡通对象组成&#xff0c;如果您没有正确地照亮它们&#xff0c;场景也会变得平淡无奇。 最简单的光照方法之一是 Phong 反射模…...

【字符串】最长公共前缀 最长回文子串

文章目录 14. 最长公共前缀解题思路&#xff1a;模拟5. 最长回文子串解题思路一&#xff1a;动态规划解题思路二&#xff1a;中心扩散法 14. 最长公共前缀 14. 最长公共前缀 ​ 编写一个函数来查找字符串数组中的最长公共前缀。 ​ 如果不存在公共前缀&#xff0c;返回空字符…...

Linux提权之详细总结版(完结)

这里是我写了折磨多提权的指令的总结 我这里毫无保留分享给大家哦 首先神魔是提权 我们完整的渗透测试的流程是(个人总结的) 首先提升权限是我们拿到webshell之后的事情,如何拿到webshell,怎末才能拿到webshell,朋友们等我更新,持续更新中,下一篇更新的是windows提权 好了 废…...

week 3 - More on Collections - Lecture 3

一、Motivation 1. Java支持哪种类型的一维数据结构&#xff1f; Java中用于在单一维度中存储数据的数据结构&#xff0c;如arrays or ArrayLists. 2. 如何在Java下创建一维数据结构&#xff1f;&#xff08;1-dimensional data structure&#xff09; 定义和初始化这些一…...

Pwntools 的详细介绍、安装指南、配置说明

Pwntools&#xff1a;Python 开源安全工具箱 一、Pwntools 简介 Pwntools 是一个由 Security researcher 开发的 高效 Python 工具库&#xff0c;专为密码学研究、漏洞利用、协议分析和逆向工程设计。它集成了数百个底层工具的功能&#xff0c;提供统一的 Python API 接口&am…...

PLC(电力载波通信)网络机制介绍

1. 概述 1.1 什么是PLC 电力载波通讯即PLC&#xff0c;是英文Power line Carrier的简称。 电力载波是电力系统特有的通信方式&#xff0c;电力载波通讯是指利用现有电力线&#xff0c;通过载波方式将模拟或数字信号进行高速传输的技术。最大特点是不需要重新架设网络&#xf…...

Qt监控系统远程回放/录像文件远程下载/录像文件打上水印/批量多线程极速下载

一、前言说明 在做这个功能的时候&#xff0c;着实费了点心思&#xff0c;好在之前做ffmpeg加密解密的时候&#xff0c;已经打通了极速加密保存文件&#xff0c;主要就是之前的类中新增了进度提示信号&#xff0c;比如当前已经处理到哪个position位置&#xff0c;发个信号出来…...

自学微信小程序的第八天

DAY8 1、使用动画API即可完成动画效果的制作,先通过wx.createAnimation()方法获取Animation实例,然后调用Animation实例的方法实现动画效果。 表40:wx.createAnimation()方法的常用选项 选项 类型 说明 duration number 动画持续时间,单位为毫秒,默认值为400毫秒 timing…...

【java】@Transactional导致@DS注解切换数据源失效

最近业务中出现了多商户多租户的逻辑&#xff0c;所以需要分库&#xff0c;项目框架使用了mybatisplus所以我们自然而然的选择了同是baomidou开发的dynamic.datasource来实现多数据源的切换。在使用初期程序运行都很好&#xff0c;但之后发现在调用com.baomidou.mybatisplus.ex…...

003 SpringBoot集成Kafka操作

4.SpringBoot集成Kafka 文章目录 4.SpringBoot集成Kafka1.入门示例2.yml完整配置3.关键配置注释说明1. 生产者优化参数2. 消费者可靠性配置3. 监听器高级特性4. 安全认证配置 4.配置验证方法5.不同场景配置模板场景1&#xff1a;高吞吐日志收集场景2&#xff1a;金融级事务消息…...

Android SystemUI开发(一)

frameworks/base/packages/SystemUI/src/com/android/systemui/SystemUI.java frameworks/base/packages/SystemUI/src/com/android/systemui/SystemUIService.java 关键文件 SystemUI 关键服务 简介 Dependency.class&#xff1a;处理系统依赖关系&#xff0c;提供资源或服…...

RestClient

什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端&#xff0c;它允许HTTP与Elasticsearch 集群通信&#xff0c;而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级&#xff…...

AI-调查研究-01-正念冥想有用吗?对健康的影响及科学指南

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; &#x1f680; AI篇持续更新中&#xff01;&#xff08;长期更新&#xff09; 目前2025年06月05日更新到&#xff1a; AI炼丹日志-28 - Aud…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

保姆级教程:在无网络无显卡的Windows电脑的vscode本地部署deepseek

文章目录 1 前言2 部署流程2.1 准备工作2.2 Ollama2.2.1 使用有网络的电脑下载Ollama2.2.2 安装Ollama&#xff08;有网络的电脑&#xff09;2.2.3 安装Ollama&#xff08;无网络的电脑&#xff09;2.2.4 安装验证2.2.5 修改大模型安装位置2.2.6 下载Deepseek模型 2.3 将deepse…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

数学建模-滑翔伞伞翼面积的设计,运动状态计算和优化 !

我们考虑滑翔伞的伞翼面积设计问题以及运动状态描述。滑翔伞的性能主要取决于伞翼面积、气动特性以及飞行员的重量。我们的目标是建立数学模型来描述滑翔伞的运动状态,并优化伞翼面积的设计。 一、问题分析 滑翔伞在飞行过程中受到重力、升力和阻力的作用。升力和阻力与伞翼面…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...