当前位置: 首页 > news >正文

科普:ROC AUC与PR AUC

在评价二分类模型性能时,有许多评价指标,其中,有一对是用面积AUC(Area Under the Curve)做评价的:ROC AUCPR AUC

本文我们对ROC AUCPR AUC进行多维度对比分析:


一、定义与核心原理

维度ROC AUCPR AUC
全称Receiver Operating Characteristic AUCPrecision-Recall AUC
横轴假正率(FPR)= FP / (FP + TN)召回率(Recall)= TP / (TP + FN)
纵轴真正率(TPR/Recall)= TP / (TP + FN)精确率(Precision)= TP / (TP + FP)
曲线生成方式调整分类阈值,计算不同阈值下的TPR和FPR调整分类阈值,计算不同阈值下的Precision和Recall
数值意义模型对正负样本的全局排序能力模型对正类样本的查准与查全的综合能力

二、使用场景对比

场景类型ROC AUCPR AUC
类别平衡数据适用(如男女用户分类)适用,但ROC AUC更直观
中度不平衡仍可用,但需谨慎解读(如正类占10%)更优(如用户流失预测)
严重不平衡易虚高(如欺诈检测正类占0.1%)首选(直接反映正类性能)
业务需求需全局排序(如信用评分)需聚焦正类(如癌症筛查)
典型场景示例
  1. 金融风控(正类占1%)
    • ROC AUC=0.95:可能因负类主导而虚高,无法反映欺诈识别的实际效果。
    • PR AUC=0.35:直接暴露模型对正类的低识别能力,需优化特征或采样策略。
  2. 广告点击预测(正类占5%)
    • ROC AUC=0.85:表明模型整体区分能力良好。
    • PR AUC=0.65:提示需提高精确率(减少误推成本)。

三、选择标准

决策因素优先选择ROC AUC优先选择PR AUC
正类比例正类≥10%正类<10%
业务目标需全局风险排序(如客户分层)需精准识别正类(如医学诊断)
误判成本容忍度可接受较高误判(如推荐系统)误判成本高(如法律审核)
模型解释性需直观展示整体性能需聚焦正类细节表现

四、与类别不平衡程度的关系

不平衡程度ROC AUC表现PR AUC表现
平衡(1:1)可靠,反映全局性能(如AUC=0.9优秀)可靠,与ROC AUC互补(如AUC=0.88)
中度不平衡(1:10)可能虚高(如AUC=0.85,实际正类识别差)更敏感(如AUC=0.6,提示需优化)
严重不平衡(1:100)虚高严重(如AUC=0.95但正类全漏)真实反映问题(如AUC=0.2,模型无效)
示例分析
  • 正类占0.5%的欺诈检测
    • ROC AUC=0.92:看似优秀,但可能因模型正确分类大量负类(TN)导致虚高。
    • PR AUC=0.15:直接显示模型对欺诈交易的识别能力极差(随机模型的PR AUC=0.005)。
  • 结论:在严重不平衡时,PR AUC是唯一可信指标

建议

  • 类别不平衡时:PR AUC是黄金指标,ROC AUC仅作参考。
  • 平衡数据时:两者互补,优先ROC AUC。
  • 业务决策时:以PR曲线选择阈值,以PR AUC评估模型优先级。

附:正样本比例与不平衡程度及推荐评估指标的对应表


正样本比例不平衡程度推荐评估指标备注
<1%严重不平衡PR AUC、F1分数、召回率(Recall)、MCC、G-Mean优先关注正类的查全率(Recall)和综合性能(PR AUC),避免ROC AUC的虚高误导。
1%~5%严重不平衡PR AUC、F1分数、召回率(Recall)、MCC、G-Mean需结合过采样(SMOTE)或代价敏感学习,重点关注少数类的识别能力。
5%~10%中度不平衡PR AUC、F1分数、G-Mean、平衡准确率(Balanced Accuracy)、ROC AUC平衡查准与查全,可辅以ROC AUC验证全局排序能力。
10%~20%轻微不平衡ROC AUC、F1分数、精确率(Precision)、PR AUC常规处理即可,关注业务核心指标(如误判成本)。
20%~40%较平衡准确率(Accuracy)、ROC AUC、F1分数、精确率/召回率(按业务需求侧重)无需特殊处理,模型优化重点转向特征工程或复杂度调整。
>40%平衡准确率(Accuracy)、ROC AUC、混淆矩阵(TP/FP/TN/FN)常规分类任务,指标选择取决于业务容忍度(如FP或FN的代价)。

主要指标
  1. 严重不平衡(<5%)

    • 核心指标:PR AUC(直接反映正类性能)、召回率(避免漏检)。
    • 辅助指标:MCC(综合所有类别)、G-Mean(平衡正负类识别能力)。
    • 禁用指标:准确率(虚高且无意义)。
  2. 中度不平衡(5%~10%)

    • 核心指标:PR AUC(仍优先)、F1分数(平衡查准与查全)。
    • 辅助指标:ROC AUC(验证全局能力)、平衡准确率(简单鲁棒)。
  3. 轻微不平衡(10%~20%)

    • 核心指标:ROC AUC(全局排序)、F1分数(平衡性能)。
    • 业务适配:若需高精确率(如广告推荐),优先精确率;若需高召回率(如用户流失预警),优先召回率。
  4. 实际应用

    • 金融风控:严重不平衡时,PR AUC + 召回率 + 误判成本矩阵。
    • 医学诊断:中度不平衡时,召回率 + 特异度(Specificity)。
    • 推荐系统:轻微不平衡时,精确率 + ROC AUC。

相关文章:

科普:ROC AUC与PR AUC

在评价二分类模型性能时&#xff0c;有许多评价指标&#xff0c;其中&#xff0c;有一对是用面积AUC&#xff08;Area Under the Curve&#xff09;做评价的&#xff1a;ROC AUC与PR AUC 本文我们对ROC AUC与PR AUC进行多维度对比分析&#xff1a; 一、定义与核心原理 维度RO…...

Vue3父组件访问子组件方法与属性完全指南

在Vue3的组件化开发中&#xff0c;父子组件间的通信是核心功能之一。本文将详细介绍五种父组件访问子组件属性/方法的实现方案&#xff0c;包含最新的<script setup>语法糖实践。&#xff08;综合1579&#xff09; 一、ref defineExpose&#xff08;推荐方案&#xff0…...

AI时代保护自己的隐私

人工智能最重要的就是数据&#xff0c;让我们面对现实&#xff0c;大多数人都不知道他们每天要向人工智能提供多少数据。你输入的每条聊天记录&#xff0c;你发出的每条语音命令&#xff0c;人工智能生成的每张图片、电子邮件和文本。我建设了一个网站(haptool.com)&#xff0c…...

Android APK组成编译打包流程详解

Android APK&#xff08;Android Package&#xff09;是 Android 应用的安装包文件&#xff0c;其组成和打包流程涉及多个步骤和文件结构。以下是详细的说明&#xff1a; 一、APK 的组成 APK 是一个 ZIP 格式的压缩包&#xff0c;包含应用运行所需的所有文件。解压后主要包含以…...

TCP长连接与短连接

TCP长连接与短连接 TCP&#xff08;传输控制协议&#xff09;中的长连接和短连接是两种不同的连接管理方式&#xff0c;各有优缺点&#xff1a; 短连接 短连接是指客户端与服务器完成一次数据交换后就断开连接。下次需要通信时&#xff0c;再重新建立连接。 特点&#xff1…...

C#委托(delegate)的常用方式

C# 中委托的常用方式&#xff0c;包括委托的定义、实例化、不同的赋值方式以及匿名委托的使用。 委托的定义 // 委托的核心是跟委托的函数结构一样 public delegate string SayHello(string c);public delegate string SayHello(string c);&#xff1a;定义了一个公共委托类型 …...

C#从入门到精通(35)—如何防止winform程序因为误操作被关闭

前言: 大家好,我是上位机马工,硕士毕业4年年入40万,目前在一家自动化公司担任软件经理,从事C#上位机软件开发8年以上!我们在开发的上位机软件运行起来以后,一般在右上角都有一个关闭按钮,正常情况下点击关闭按钮就能关闭软件,但是不排除我们不想关闭软件,但是因为不…...

docker本地镜像源搭建

最近Deepseek大火后&#xff0c;接到任务就是帮客户装Dify&#xff0c;每次都头大&#xff0c;因为docker源不能用&#xff0c;实在没办法&#xff0c;只好自己搭要给本地源。话不多说具体如下&#xff1a; 1、更改docker的配置文件&#xff0c;添加自己的私库地址&#xff0c…...

Sqlserver安全篇之_TLS的证书概念

证书的理解 参考Sqlserver的官方文档https://learn.microsoft.com/zh-cn/sql/database-engine/configure-windows/certificate-overview?viewsql-server-ver16 TLS(Transport Layer Security)传输层安全和SSL(Secure Sockets Layer)安全套接字层协议位于应用程序协议层和TCP/…...

Kafka生产者相关

windows中kafka集群部署示例-CSDN博客 先启动集群或者单机也OK 引入依赖 <dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>3.9.0</version></dependency>关于主题创建 理论…...

技术问题汇总:前端怎么往后端传一个数组?

场景 现在一个专门负责复习算法的服务&#xff0c;筛选出了用户今天需要复习的笔记的ids&#xff0c;现在要调用笔记服务根据ids查询的接口。 请问复习服务怎么将ids发到笔记服务&#xff0c;笔记服务怎么接收。 思路 发的时候肯定是用字符串&#xff0c;接收的时候&#xf…...

【03】STM32F407 HAL 库框架设计学习

【03】STM32F407 HAL 库框架设计学习 摘要 本文旨在为初学者提供一个关于STM32F407微控制器HAL&#xff08;Hardware Abstraction Layer&#xff09;库框架设计的详细学习教程。通过本文&#xff0c;读者将从零开始&#xff0c;逐步掌握STM32F407的基本知识、HAL库的配置步骤…...

智能图像处理平台:图像处理配置类

这里我们先修改一下依赖&#xff0c;不用JavaCV&#xff0c;用openCV。 导入依赖&#xff1a; <!-- JavaCV 依赖&#xff0c;用于图像和视频处理 --> <!-- <dependency>--> <!-- <groupId>org.bytedeco</groupId>--> &l…...

【图文详解】什么是微服务?什么是SpringCloud?

目录 一.认识微服务架构 ??微服务带来的挑战 二.微服务解决方案SpringCloud ??SpringCloud的版本 ??SpringCloud和SpringBoot的关系 ??SpringCloud实现方案 Spring Cloud Netfix Spring Cloud Alibaba ??Spring Cloud 实现对比 在入门Spring Cloud 之前&…...

基于ssm的校园跑腿管理系统+vue

作者主页&#xff1a;舒克日记 简介&#xff1a;Java领域优质创作者、Java项目、学习资料、技术互助 文中获取源码 项目介绍 系统共有管理员、用户两个角色 管理员主要的功能用户信息管理、任务信息管理、任务类型管理、接单信息管理、公告信息管理、投诉信息管理、公告类型管…...

5个GitHub热点开源项目!!

1.自托管 Moonlight 游戏串流服务&#xff1a;Sunshine 主语言&#xff1a;C&#xff0c;Star&#xff1a;14.4k&#xff0c;周增长&#xff1a;500 这是一个自托管的 Moonlight 游戏串流服务器端项目&#xff0c;支持所有 Moonlight 客户端。用户可以在自己电脑上搭建一个游戏…...

docker通用技术介绍

docker通用技术介绍 1.docker介绍 1.1 基本概念 docker是一个开源的容器化平台&#xff0c;用于快速构建、打包、部署和运行应用程序。它通过容器化技术将应用及其依赖环境&#xff08;如代码、库、系统工具等&#xff09;打包成一个标准化、轻量级的独立单元&#xff0c;实…...

#渗透测试#批量漏洞挖掘#某图创图书馆集群管理系统updOpuserPw SQL注入(CVE-2021-44321)

免责声明 本教程仅为合法的教学目的而准备&#xff0c;严禁用于任何形式的违法犯罪活动及其他商业行为&#xff0c;在使用本教程前&#xff0c;您应确保该行为符合当地的法律法规&#xff0c;继续阅读即表示您需自行承担所有操作的后果&#xff0c;如有异议&#xff0c;请立即停…...

智能合约安全 | 合约无效化攻击

目录&#xff1a; 智能合约安全 合约无效化攻击 合约自毁函数 selfdestruct 攻击实现 漏洞防御 总结 智能合约安全 合约无效化攻击 合约无效化攻击类同于web安全中的逻辑漏洞中的一种 我们这里拿一个典型的例子来讲解 有这样一份智能合约, 每个人可以向其中发送1 eth 第七个…...

RabbitMQ 的介绍与使用

一. 简介 1> 什么是MQ 消息队列&#xff08;Message Queue&#xff0c;简称MQ&#xff09;&#xff0c;从字面意思上看&#xff0c;本质是个队列&#xff0c;FIFO先入先出&#xff0c;只不过队列中存放的内容是message而已。 其主要用途&#xff1a;不同进程Process/线程T…...

Python|GIF 解析与构建(5):手搓截屏和帧率控制

目录 Python&#xff5c;GIF 解析与构建&#xff08;5&#xff09;&#xff1a;手搓截屏和帧率控制 一、引言 二、技术实现&#xff1a;手搓截屏模块 2.1 核心原理 2.2 代码解析&#xff1a;ScreenshotData类 2.2.1 截图函数&#xff1a;capture_screen 三、技术实现&…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする

日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

linux 错误码总结

1,错误码的概念与作用 在Linux系统中,错误码是系统调用或库函数在执行失败时返回的特定数值,用于指示具体的错误类型。这些错误码通过全局变量errno来存储和传递,errno由操作系统维护,保存最近一次发生的错误信息。值得注意的是,errno的值在每次系统调用或函数调用失败时…...

Cinnamon修改面板小工具图标

Cinnamon开始菜单-CSDN博客 设置模块都是做好的&#xff0c;比GNOME简单得多&#xff01; 在 applet.js 里增加 const Settings imports.ui.settings;this.settings new Settings.AppletSettings(this, HTYMenusonichy, instance_id); this.settings.bind(menu-icon, menu…...

镜像里切换为普通用户

如果你登录远程虚拟机默认就是 root 用户&#xff0c;但你不希望用 root 权限运行 ns-3&#xff08;这是对的&#xff0c;ns3 工具会拒绝 root&#xff09;&#xff0c;你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案&#xff1a;创建非 roo…...

华为云Flexus+DeepSeek征文|DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建

华为云FlexusDeepSeek征文&#xff5c;DeepSeek-V3/R1 商用服务开通全流程与本地部署搭建 前言 如今大模型其性能出色&#xff0c;华为云 ModelArts Studio_MaaS大模型即服务平台华为云内置了大模型&#xff0c;能助力我们轻松驾驭 DeepSeek-V3/R1&#xff0c;本文中将分享如何…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...