AI 实战2 - face -detect
人脸检测
- 环境
- 安装源设置
- conda 环境安装依赖库
- 概述
- 数据集
- wider_face转yolo
- 环境依赖
- 标注信息格式转换
- 图片处理
- 生成 train.txt 文件
- 数据集展示
- 数据集加载和处理
- 参考文章
环境
安装源设置
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
conda 环境安装依赖库
conda create -n facePay python=3.7
conda activate facePay
conda install pytorch-cpu -c pytorch
#使用conda install pytorch-cpu会快很多
pip3 install torchvision -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install bcolz
pip install scikit-learn
pip install tqdm
pip install easydict
概述
人脸检测属于目标检测领域,目标检测领域分两大类:通用目标检测(n+1分类),特定类别目标检测(2分类)
人脸检测算法:Faster-RCNN系列,YOLO系列,级联CNN系列
评价指标:召回率,误检率,检测速度
数据集
yolo 通过txt文件标注,标注内容:0 0.15 0.33 0.14 0.22
对应:类别 归一化后中心点坐标 [x,y,w,h]
wider_face转yolo
环境依赖
# PIL 安装
pip install -U Pillow -i https://pypi.tuna.tsinghua.edu.cn/simple
conda install Pillow
# pip 安装会报错,conda 安装正常
标注信息格式转换
import os
from PIL import Imageparent_path = "/home/ai/wider_face_split/"def convert_to_yolo_format(input_file, output_dir, image_dir):with open(input_file, 'r') as f:lines = f.readlines()i = 0while i < len(lines):image_path = lines[i].strip() # Get the relative path of imagenum_boxes = int(lines[i + 1].strip()) # Get the number of boxes# Path of the label filelabel_path = os.path.join(output_dir, os.path.basename(image_path).replace('.jpg', '.txt'))os.makedirs(os.path.dirname(label_path), exist_ok=True)# Get the Absolute Path of the imageimage_abs_path = os.path.join(image_dir, image_path)# Open the image to get the real size of itwith Image.open(image_abs_path) as img:img_width, img_height = img.size# Create the file and write data inwith open(label_path, 'w') as label_file:for j in range(num_boxes):# Fetch the box data (x_min, y_min, width, height)box_data = list(map(int, lines[i + 2 + j].strip().split()))x_min, y_min, width, height = box_data[:4]# Calculate the center coordinate (x_center, y_center)x_center = (x_min + width / 2)y_center = (y_min + height / 2)# Convert to the relative coordinatesx_center /= img_widthy_center /= img_heightwidth /= img_widthheight /= img_height# The class is defaulted by 0label_file.write(f"0 {x_center} {y_center} {width} {height}\n")# Update the index and jump to the next imagei += 2 + (1 if num_boxes == 0 else num_boxes)if __name__ == "__main__":# Modify the additional section by your own pathinput_path = parent_path+"wider_face_split/"output_path = parent_path+"wider_for_yolo/"input_file_pre = "wider_face_"input_file_sub = "_bbx_gt.txt"if not os.path.exists(output_path):os.makedirs(output_path)# Train and Validationdatasetfile = ["train", "val"]for category in datasetfile:convert_to_yolo_format(input_path + input_file_pre + category + input_file_sub,output_path + category + "/labels",parent_path+f"WIDER_{category}/images")
图片处理
wider_face对不同情景的图片做了分类,YOLO要求训练图片在一个文件夹,因此训练前需要将数据集所有图片copy到一个文件夹下
import os
import shutildef copy_images(src_dir, dest_dir):# 确保目标目录存在if not os.path.exists(dest_dir):os.makedirs(dest_dir)# 递归查找所有图片for root, _, files in os.walk(src_dir):for file in files:if file.lower().endswith(('.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.webp')):src_path = os.path.join(root, file)dest_path = os.path.join(dest_dir, file)# 如果目标文件已存在,可以选择覆盖或跳过if not os.path.exists(dest_path):shutil.copy2(src_path, dest_path) # 保留原文件元数据print(f"Copied: {src_path} -> {dest_path}")else:print(f"Skipped (already exists): {dest_path}")# 配置源文件夹和目标文件夹路径
train_source_folder = r"/home/a/wider_face_split/WIDER_train/images"
train_destination_folder = r"/home/a/wider_face_split/WIDER_train/data"
val_source_folder = r"/home/a/wider_face_split/WIDER_val/images"
val_destination_folder = r"/home/a/wider_face_split/WIDER_val/data"# 执行复制
copy_images(train_source_folder, train_destination_folder)
copy_images(val_source_folder, val_destination_folder)
生成 train.txt 文件
ls -al images/ | awk '{print $NF}' > ../train.txt
数据集展示
import cv2
import os
import numpy as npif __name__ == "__main__":# 第一步:指定文件路径root_path ='/home/neucore/develop/code/pre_research/dl/face_ai/study/yoloDataset/train/images/'path = '/home/neucore/develop/code/pre_research/dl/face_ai/study/yoloDataset/train.txt'path_voc_names = '/home/neucore/develop/code/pre_research/dl/face_ai/study/yoloDataset/face.names'# 第二步:获取目标类别with open(path_voc_names ,'r') as f:lable_map = f.readlines()for i in range(len(lable_map)):lable_map[i] = lable_map[i].strip()print(i, lable_map[i])# 第三步:获取图像数据和标注信息with open(path ,'r') as file:img_files = file.readlines()# img_files = os.path.join(root_path, img_files[i][0:])for i in range(len(img_files)):img_files[i] = img_files[i].strip()# 图像的绝对路径, [0:]表示去掉多少个字节,[2:]表示去掉前两个字符img_files[i] = os.path.join(root_path, img_files[i][0:])# print(i, img_files[i])label_files = [x.replace('images','labels').replace ('.jpg','.txt') for x in img_files]# print(label_files)#第四步:将标注信息给制在图像上#读取图像并对标注信息进行绘# for i in range(len(img_files)):for i in range (3):print (img_files[i])# 图像读取,获取宽高img =cv2.imread(img_files[i])if img is None:print("Error: Image not found or path is incorrect.")w = img.shape[1]h = img.shape[0]# 标签文件的绝对路径print(i, label_files[i])if os.path.isfile(label_files[i]):# 获取每一行的标注信息with open(label_files[i], 'r') as file:lines = file.read().splitlines()# 获取每一行的标准信息(class,x,y,w,h)x = np.array([x.split() for x in lines], dtype=np.float32)for k in range(len(x)):anno = x[k]label = int(anno[0])# 获取框的坐标值,左上角坐标和右下角坐标x1 = int((float(anno[1]) - float(anno[3])/2) * w)y1 = int((float(anno[2]) - float(anno[4])/2) * h)x2 = int((float(anno[1]) + float(anno[3])/2) * w)y2 = int((float(anno[2]) + float(anno[4])/2) * h)# 将标注框绘制在图像上cv2.rectangle(img, (x1,y1), (x2,y2), (255,30,30), 2)# 将标注类别绘制在图像上cv2.putText(img, ("%s"%(str(lable_map[label]))), (x1,y1),cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 1)cv2.imshow('img', img)cv2.waitKey()# if cv2.waitKey(1) == 27:# breakcv2.destroyAllWindows()
数据集加载和处理
参考文章
WIDER FACE数据集转YOLO格式
相关文章:
AI 实战2 - face -detect
人脸检测 环境安装源设置conda 环境安装依赖库 概述数据集wider_face转yolo环境依赖标注信息格式转换图片处理生成 train.txt 文件 数据集展示数据集加载和处理 参考文章 环境 安装源设置 conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/f…...
Spring Boot 项目开发流程全解析
目录 引言 一、开发环境准备 二、创建项目 三、项目结构 四、开发业务逻辑 1.创建实体类: 2.创建数据访问层(DAO): 3.创建服务层(Service): 4.创建控制器层(Controller&…...
从Java到MySQL8源码:深入解析PreparedStatement参数绑定与执行机制
引言 在数据库开发中,PreparedStatement(预处理语句)是防止SQL注入、提升性能的重要工具。它通过分离SQL结构与参数值,不仅增强了安全性,还能利用预编译优化执行效率。本文将从Java JDBC驱动和MySQL 8源码的双重视角&…...
mysql的主从同步
1、异步复制:这是MySQL默认的复制模式。在这种模式下,主库在执行完客户端提交的事务后会立即将结果返回给客户端,并不关心从库是否已经接收并处理。这种模式的优点是实现简单,但缺点是如果主库崩溃,已经提交的事务可能…...
工程化与框架系列(10)--微前端架构
微前端架构 🏗️ 微前端是一种将前端应用分解成更小、更易管理的独立部分的架构模式。本文将详细介绍微前端的核心概念、实现方案和最佳实践。 微前端概述 🌟 💡 小知识:微前端的核心理念是将前端应用分解成一系列独立部署、松耦…...
【3天快速入门WPF】11-附加属性
目录 1. 步骤1:定义附加属性2. 示例代码3. 步骤2:在XAML中使用附加属性3.1. 示例代码4. 步骤3:扩展使用场景4.1. 示例代码5. 总结上一篇讲到了依赖属性,本篇主要想说一下附加属性。 在WPF中,附加属性(Attached Property)是一种特殊的依赖属性,允许你在不属于某个类的控…...
MySQL并发知识(面试高频)
mysql并发事务解决 不同隔离级别下,mysql解决并发事务的方式不同。主要由锁机制和MVCC(多版本并发控制)机制来解决并发事务问题。 1. mysql中的锁有哪些? 表级锁: 场景:表级锁适用于需要对整个表进行操作的情况,例如…...
现存脑容知识库
Redis import queue import threading import asyncio 异步:在一个线程内,等待的时候可以切换到其他任务。 多线程:每个线程独立运行,同时处理多个任务。 回调函数 网络请求(JavaScript)在浏览器中&a…...
Mysql-如何理解事务?
一、事务是什么东西 有些场景中,某个操作需要多个sql配合完成: 例如: 李四这个月剩下的前不够交房租了,找张三借1000元急用: (1)给张三的账户余额 减去1000元 updata 账户表 set money money -…...
dify绑定飞书多维表格
dify 绑定飞书和绑定 notion 有差不多的过程,都需要套一层应用的壳子,而没有直接可以访问飞书文档的 API。本文记录如何在dify工具中使用新增多条记录工具。 创建飞书应用 在飞书开放平台创建一个应用,个人用户创建企业自建应用。 自定义应…...
QT播放视频保持视频宽高比消除黑边
QT播放视频保持视频宽高比消除黑边 1、问题 在播放视频的时候,由于框架的大小发生变化,导致视频出现黑边很不好看。 因此需要像一种方法消除黑边 2、处理 1、读取视频的宽高比 2、设置视频的Widget的大小固定,Widget的宽高比和视频宽高比…...
1. IO的基础知识
1.1 流 Java程序通过流执行IO。流是一种抽象,它要么生成信息,要么使用信息。流通过java的IO系统链接到物理设备。所有流的行为方式都是相同的,尽管它们链接的物理设备是不同的。 1.2 字节流和字符流 Java定义了两种类型的流 : 字节流和字符流…...
科普:ROC AUC与PR AUC
在评价二分类模型性能时,有许多评价指标,其中,有一对是用面积AUC(Area Under the Curve)做评价的:ROC AUC与PR AUC 本文我们对ROC AUC与PR AUC进行多维度对比分析: 一、定义与核心原理 维度RO…...
Vue3父组件访问子组件方法与属性完全指南
在Vue3的组件化开发中,父子组件间的通信是核心功能之一。本文将详细介绍五种父组件访问子组件属性/方法的实现方案,包含最新的<script setup>语法糖实践。(综合1579) 一、ref defineExpose(推荐方案࿰…...
AI时代保护自己的隐私
人工智能最重要的就是数据,让我们面对现实,大多数人都不知道他们每天要向人工智能提供多少数据。你输入的每条聊天记录,你发出的每条语音命令,人工智能生成的每张图片、电子邮件和文本。我建设了一个网站(haptool.com),…...
Android APK组成编译打包流程详解
Android APK(Android Package)是 Android 应用的安装包文件,其组成和打包流程涉及多个步骤和文件结构。以下是详细的说明: 一、APK 的组成 APK 是一个 ZIP 格式的压缩包,包含应用运行所需的所有文件。解压后主要包含以…...
TCP长连接与短连接
TCP长连接与短连接 TCP(传输控制协议)中的长连接和短连接是两种不同的连接管理方式,各有优缺点: 短连接 短连接是指客户端与服务器完成一次数据交换后就断开连接。下次需要通信时,再重新建立连接。 特点࿱…...
C#委托(delegate)的常用方式
C# 中委托的常用方式,包括委托的定义、实例化、不同的赋值方式以及匿名委托的使用。 委托的定义 // 委托的核心是跟委托的函数结构一样 public delegate string SayHello(string c);public delegate string SayHello(string c);:定义了一个公共委托类型 …...
C#从入门到精通(35)—如何防止winform程序因为误操作被关闭
前言: 大家好,我是上位机马工,硕士毕业4年年入40万,目前在一家自动化公司担任软件经理,从事C#上位机软件开发8年以上!我们在开发的上位机软件运行起来以后,一般在右上角都有一个关闭按钮,正常情况下点击关闭按钮就能关闭软件,但是不排除我们不想关闭软件,但是因为不…...
docker本地镜像源搭建
最近Deepseek大火后,接到任务就是帮客户装Dify,每次都头大,因为docker源不能用,实在没办法,只好自己搭要给本地源。话不多说具体如下: 1、更改docker的配置文件,添加自己的私库地址,…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
【位运算】消失的两个数字(hard)
消失的两个数字(hard) 题⽬描述:解法(位运算):Java 算法代码:更简便代码 题⽬链接:⾯试题 17.19. 消失的两个数字 题⽬描述: 给定⼀个数组,包含从 1 到 N 所有…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
【项目实战】通过多模态+LangGraph实现PPT生成助手
PPT自动生成系统 基于LangGraph的PPT自动生成系统,可以将Markdown文档自动转换为PPT演示文稿。 功能特点 Markdown解析:自动解析Markdown文档结构PPT模板分析:分析PPT模板的布局和风格智能布局决策:匹配内容与合适的PPT布局自动…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材)
推荐 github 项目:GeminiImageApp(图片生成方向,可以做一定的素材) 这个项目能干嘛? 使用 gemini 2.0 的 api 和 google 其他的 api 来做衍生处理 简化和优化了文生图和图生图的行为(我的最主要) 并且有一些目标检测和切割(我用不到) 视频和 imagefx 因为没 a…...
