当前位置: 首页 > news >正文

(下:补充——五个模型的理论基础)深度学习——图像分类篇章

目录

1.1 卷积神经网络基础

3.1 AlexNet网络结构详解与花分类数据集下载

4.1 VGG网络详解及感受野的计算

5.1 GoogLeNet网络详解

6.1 ResNet网络结构,BN以及迁移学习详解

总结(可以直接看总结)


1.1 卷积神经网络基础

视频讲解:
1.1 卷积神经网络基础_哔哩哔哩_bilibili

发展不是一帆风顺的

全连接层:

卷积层()

目的:进行图像特征提取

特性:拥有局部感知机制,权值共享

扩展到多维

 特征总结:

  1. 卷积核的channel与输入特征层的channek相同
  2. 输出的特征矩阵channel与卷积核个数相同

sigmoid/Relu  两个激活函数  各有缺点:

Sigmoid:饱和时梯度值小,网络层数较深时易出现梯度消失
Relu:反向传播时出现非常大的梯度更新后导致权重分布中心小于零,导致该处导数始终为零,反向传播无法更新权重,即进入失活状态。

出现越界情况用padding处理(增补)

池化层()

和卷积层类似 但是要更简单

目的:对特征图像进行稀疏处理,减少数据运算量

(补充)反向传播(后面跳过了)

说明:本节理论较多,会枯燥,尽管内容不需要完全掌握,但是要大致理解,留有印象

误差的计算:

softmax:让结果满足概率分布(即概率和为1)  (猫/狗)

sigmoid:(人类/男人)

误差的反向传播:

3.1 AlexNet网络结构详解与花分类数据集下载

视频讲解:
3.1 AlexNet网络结构详解与花分类数据集下载_哔哩哔哩_bilibili

AlexNet(2012冠军)

该网络的亮点在于:

  • (1)首次利用 GPU进行网络加速训练。
  • (2)使用了 ReLu 激活函数,而不是传统的 sigmoid 激活函数以及 Tanh 激活函数。
  • (3)使用了 LRN 局部响应归一化。
  • (4)在全连接层的前两层中使用了 Dropout随机失活神经元操作,以减少过拟合。

中间的图像很好的诠释了AlexNet的好处,减少了过拟合的现象

解决方法:使用Dropout的方式在网络正传播过程中随机失活一部分神经元

经卷积后的矩阵尺寸大小计算公式为:N=(W-F+2P)/S+1
输入图片大小 W*W
Filter大小F*F
步长 S
padding的像素数P

4.1 VGG网络详解及感受野的计算

视频讲解:
4.1 VGG网络详解及感受野的计算_哔哩哔哩_bilibili

网络结构:

网络亮点: 

  • 通过堆叠多个3*3的卷积核来替代大尺度卷积核(减少所需参数 )
  • 通过堆善两个3x3的卷积核替代5x5的卷积核
  • 通过堆叠三个3x3的卷积核替代7x7的卷积核。

为什么这么干?
效果相同的情况下,参数更少。

5.1 GoogLeNet网络详解

网络结构:

网络中的亮点:

  • 引入了Inception结构(融合不同尺度的特征信息)
  • 使用1x1的卷积核进行降维以及映射处理    减少参数/特征矩阵深度
  • 添加两个辅助分类器帮助训练
  • 丢弃全连接层,使用平均池化层(大大减少模型参数)

注意:AlexNet和VGG都只有一个输出层,GooLeNet有三个输出层

6.1 ResNet网络结构,BN以及迁移学习详解

视频讲解:
6.1 ResNet网络结构,BN以及迁移学习详解_哔哩哔哩_bilibili

网络结构:

网络中的亮点:

  • 超深的网络结构(突破1000层)
  • 提出residual模块  
  • 使用Batch Normalization加速训练(丟奔dropout)

随着网络加深,梯度消失&&梯度爆炸现象越来越明显     BN等方式解决

Batch Normalization原理:
要让整个训练样本的数据集满足分布规律(均值为0方差为1)
退化问题,通过残差解决

迁移学习:
常见的迁移学习方式:

  • 1.载入权重后训练所有参数
  • 2.载入权重后只训练最后几层参数
  • 3.载入权重后在原网络基础上再添加一层全连接层,仅训练最后一个全连接层

总结(可以直接看总结):

综上呢,其实就是延续上一篇文章(上)基于机器学习的图像识别——遥感图像分类(LeNet-5;AlexNet;VGGNet;GoogLeNet;ResNet)-CSDN博客

五种”神经网络模型“的进一步讲解,偏向于理论层面

但两篇文章整理的是不同博主的讲解视频,讲的都蛮好的,通过”对比学习“可以发现,二者间会有一部分共通之处——这些共同之处一定是基础/重点,当然我已经帮大家整理好了,请各位放心食用。

相关文章:

(下:补充——五个模型的理论基础)深度学习——图像分类篇章

目录 1.1 卷积神经网络基础 3.1 AlexNet网络结构详解与花分类数据集下载 4.1 VGG网络详解及感受野的计算 5.1 GoogLeNet网络详解 6.1 ResNet网络结构,BN以及迁移学习详解 总结(可以直接看总结) 1.1 卷积神经网络基础 视频讲解&#xf…...

使用Python自动生成图文并茂的网页分析报告

在数据分析中,不管是市场研究还是科学分析,经常需要使用Python进行数据分析并生成图表报告。一般使用Python生成和展示图表时都是使用matplotlib 库生成静态图片文件,这种方式不便之处是不方便跟动态文字段落结合在一起,也不方便分…...

uniapp-原生android插件开发摘要

uni-app在App侧的原生扩展插件,支持使用java、object-c等原生语言编写,从HBuilderX 3.6起,新增支持了使用uts来开发原生插件。 基础项目 UniPlugin-Hello-AS工程请在App离线SDK中查找 基础项目(App离线SDK)已经配置好了自定义插件所需要的…...

GIT工具学习【1】:基本操作

目录 0.本地代码分区1.配置自己的个人信息(设置一次即可)2.新建仓库3.提交代码到暂存区(加入购物车)4.从暂存区撤回(不会改变工作区文件)5.恢复指定版本(会改变工作区文件)5.1&#…...

《国密算法开发实战:从合规落地到性能优化》

前言 随着信息技术的飞速发展,信息安全已成为全球关注的焦点。在数字化时代,数据的保密性、完整性和可用性直接关系到国家、企业和个人的利益。为了保障信息安全,密码技术作为核心支撑,发挥着至关重要的作用。国密算法,即国家密码算法,是我国自主设计和推广的一系列密码…...

【语法】C++中string类中的两个问题及解答

贴主在学习string类时遇到过两个困扰我的问题,今天拿出来给大家分享一下我是如何解决的 一、扩容时capacity的增长问题 在string的capacity()接口中,调用的是这个string对象的容量(可以存多少个有效字符),而size()是调用的string对象现在有…...

LeetCode-154. 寻找旋转排序数组中的最小值 II

1、题目描述: 已知一个长度为 n 的数组,预先按照升序排列,经由 1 到 n 次 旋转 后,得到输入数组。例如,原数组 nums [0,1,4,4,5,6,7] 在变化后可能得到: 若旋转 4 次,则可以得到 [4,5,6,7,0,…...

2.数据结构:1.Tire 字符串统计

1.Tire 字符串统计 #include<algorithm> #include<cstring> #include<iostream>using namespace std;const int N100010; int son[N][26];//至多 N 层&#xff0c;每一层至多 26 个节点&#xff08;字母&#xff09; int cnt[N];//字符串至多 N 个&#xff…...

C语言复习4:有关数组的基础常见算法

# 数组的常见算法 - 查找算法 1. 基本查找/顺序查找 2. 二分查找/折半查找 3. 插值查找 4. 分块查找 5. 哈希查找 6. 树表查找 7. 斐波那契查找 - 排序算法&#xff08;顾名思义&#xff0c;就是把没有顺序的…...

Ubuntu从零创建Hadoop集群

目录 前言 前提准备 1.设置网关和网段 2.查看虚拟机IP及检查网络 3.Ubuntu相关配置 镜像源配置 下载 vim编辑器 4.设置静态IP和SSH免密(可选) 设置静态IP SSH免密 5.JDK环境部署 6.Hadoop环境部署 7.配置 Hadoop 配置文件 HDFS集群规划 HDFS集群配置 1.配…...

GPIO概念

GPIO通用输入输出口 在芯片内部存在多个GPIO&#xff0c;每个GPIO用于管理多个芯片进行输入&#xff0c;输出工作 引脚电平 0v ~3.3v&#xff0c;部分引脚可容任5v 输出模式下可控制端口输出高低电平&#xff0c;可以驱动LED&#xff0c;控制蜂鸣器&#xff0c;模拟通信协议&a…...

Node.js, Bun, Deno 比较概述

以下是 Node.js、Bun 和 Deno 的对比分析 概览 对比维度Node.jsDenoBun首次发布200920202022创始人Ryan DahlRyan Dahl&#xff08;Node.js 原作者&#xff09;Jarred Sumner运行时引擎V8&#xff08;Chrome&#xff09;V8&#xff08;Chrome&#xff09;JavaScriptCore&#…...

C# 类库打包dll文件

目录 前言操作流程注意事项 前言 在C#中&#xff0c;有多种方式可以对代码进行加密&#xff0c;以保护源代码不被轻易查看或修改&#xff0c;这篇文章主要介绍将C# cs类文件加密为dll文件的方式进行保护。 操作流程 在 Visual Studio 中&#xff0c;选择“创建新项目”。 选…...

Linux中的UDP编程接口基本使用

UDP编程接口基本使用 本篇介绍 在前面网络基础部分已经介绍了网络的基本工作模式&#xff0c;有了这些理论基础之后&#xff0c;下面先从UDP编程开始从操作部分深入网络 在本篇中&#xff0c;主要考虑下面的内容&#xff1a; 创建并封装服务端&#xff1a;了解创建服务端的…...

RAG项目实战:金融问答系统

需求痛点 私有知识很多&#xff0c;如何让大模型只选择跟问题有关的知识进行参考呢&#xff1f; 需求分析 是否可以使用关键词匹配呢&#xff1f;以前的搜索主要使用关键词匹配&#xff0c;这个要求太高了&#xff0c;需要提前抽取准备好关键词&#xff0c;有点像以前SEO的工…...

大白话React第十一章React 相关的高级特性以及在实际项目中的应用优化

假设我们已经对 React 前端框架的性能和可扩展性评估有了一定了解&#xff0c;接下来的阶段可以深入学习 React 相关的高级特性以及在实际项目中的应用优化&#xff0c;以下是详细介绍及代码示例&#xff1a; 1. React 高级特性的深入学习 1.1 React 并发模式&#xff08;Con…...

虚拟机Linux操作(持续更新ing)

虚拟机操作(持续更新ing) 虚拟机基本操作(Linux) # Linux # 立刻关机 poweroff # 立刻关机&#xff0c;可以选择数字或者具体时间 shutdown -h now # 立刻重启&#xff0c;可以选择数字或者具体时间 shutdown -r now # 立刻重启 reboot # cd 切换目录,下面用根目录举例 cd /…...

【开源-线程池(Thread Pool)项目对比】

一些实现**线程池&#xff08;Thread Pool&#xff09;**功能的开源项目的对比分析。 线程池功能的开源项目 项目名称语言优点缺点适用场景开源代码链接ThreadPoolC简单易用&#xff0c;代码简洁&#xff1b;适合快速原型开发。功能较为基础&#xff0c;不支持动态调整线程数…...

JMeter 实战项目脚本录制最佳实践(含 BadBoy 录制方式)

JMeter 实战项目脚本录制最佳实践&#xff08;含 BadBoy 录制方式&#xff09; 一、项目背景 在软件测试过程中&#xff0c;使用 JMeter 进行性能测试和功能测试是常见的操作。本实战项目将详细介绍如何使用 JMeter 自带工具以及 BadBoy 进行脚本录制&#xff0c;并完善脚本以…...

Jackson注解实战:@JsonInclude的妙用

在日常的Java开发中&#xff0c;我们经常需要将Java对象序列化为JSON格式&#xff0c;以便进行数据传输或存储。然而&#xff0c;有时候我们并不希望在JSON中包含某些空值或不必要的字段&#xff0c;这不仅会增加数据的冗余性&#xff0c;还可能对后续的处理造成困扰。Jackson库…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

K8S认证|CKS题库+答案| 11. AppArmor

目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作&#xff1a; 1&#xff09;、切换集群 2&#xff09;、切换节点 3&#xff09;、切换到 apparmor 的目录 4&#xff09;、执行 apparmor 策略模块 5&#xff09;、修改 pod 文件 6&#xff09;、…...

Oracle查询表空间大小

1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

剑指offer20_链表中环的入口节点

链表中环的入口节点 给定一个链表&#xff0c;若其中包含环&#xff0c;则输出环的入口节点。 若其中不包含环&#xff0c;则输出null。 数据范围 节点 val 值取值范围 [ 1 , 1000 ] [1,1000] [1,1000]。 节点 val 值各不相同。 链表长度 [ 0 , 500 ] [0,500] [0,500]。 …...

【Oracle】分区表

个人主页&#xff1a;Guiat 归属专栏&#xff1a;Oracle 文章目录 1. 分区表基础概述1.1 分区表的概念与优势1.2 分区类型概览1.3 分区表的工作原理 2. 范围分区 (RANGE Partitioning)2.1 基础范围分区2.1.1 按日期范围分区2.1.2 按数值范围分区 2.2 间隔分区 (INTERVAL Partit…...

蓝桥杯3498 01串的熵

问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798&#xff0c; 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...

企业如何增强终端安全?

在数字化转型加速的今天&#xff0c;企业的业务运行越来越依赖于终端设备。从员工的笔记本电脑、智能手机&#xff0c;到工厂里的物联网设备、智能传感器&#xff0c;这些终端构成了企业与外部世界连接的 “神经末梢”。然而&#xff0c;随着远程办公的常态化和设备接入的爆炸式…...

HarmonyOS运动开发:如何用mpchart绘制运动配速图表

##鸿蒙核心技术##运动开发##Sensor Service Kit&#xff08;传感器服务&#xff09;# 前言 在运动类应用中&#xff0c;运动数据的可视化是提升用户体验的重要环节。通过直观的图表展示运动过程中的关键数据&#xff0c;如配速、距离、卡路里消耗等&#xff0c;用户可以更清晰…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...