Opencv之sift特征检测和FLANN 匹配器进行指纹特征匹配
sift特征检测和FLANN 匹配器进行指纹匹配
目录
- sift特征检测和FLANN 匹配器进行指纹匹配
- 1 sift特征检测
- 1.1 概念
- 1.2 优缺点
- 2 FLANN 匹配器
- 2.1 概念
- 2.2 工作原理与匹配方式
- 2.3 FLANN 匹配器的使用步骤
- 2.4 优缺点
- 3 函数
- 3.1 特征检测匹配
- 3.2 匹配符合条件点并绘制
- 3 代码测试
- 3.1 单个指纹模板匹配
- 3.2 多个指纹匹配
1 sift特征检测
1.1 概念
SIFT(尺度不变特征变换)是一种用于图像处理中检测和描述图像中局部结构的算法。它是由David Lowe在1999年提出的,并在2004年进行了详细阐述。SIFT特征具有尺度不变性,这意味着即使图像的尺度发生变化,SIFT特征也能保持稳定。
1.2 优缺点
SIFT特征的优点:
- 尺度不变性:能够适应图像的尺度变化。
- 旋转不变性:能够适应图像的旋转变化。
- 对光照、仿射变换和噪声具有一定的鲁棒性。
SIFT特征的缺点:
- 计算复杂度较高,实时性较差。
- 对于非线性变换和大幅度的视角变化,SIFT特征的性能可能会下降。
2 FLANN 匹配器
2.1 概念
FLANN 匹配器(Fast Library for Approximate Nearest Neighbors,快速近似最近邻搜索库)是 OpenCV 中用于高效匹配特征描述符的工具。它通过近似算法加速最近邻搜索,特别适合处理高维数据(如 SIFT 或 SURF 描述符)。
2.2 工作原理与匹配方式
- 最近邻搜索:
- 给定一个特征描述符集合,FLANN 的目标是找到与查询描述符最接近的匹配点。
- 精确的最近邻搜索(如暴力匹配)在高维数据中计算量很大,FLANN 通过近似算法加速搜索。
- 近似算法:
- FLANN 使用了一种基于树结构的算法(如 KD-Tree 或 Hierarchical K-Means Tree)来组织数据,从而快速缩小搜索范围。
- 通过牺牲一定的精度,换取更快的搜索速度。
- 匹配方式:
- FLANN 支持两种匹配方式:
- 单匹配:为每个查询描述符找到一个最近邻。
- KNN 匹配:为每个查询描述符找到 K 个最近邻。
2.3 FLANN 匹配器的使用步骤
-
创建 FLANN 匹配器:
使用 cv2.FlannBasedMatcher 创建 FLANN 匹配器对象。 -
准备特征描述符:
使用特征检测算法(如 SIFT、SURF 或 ORB)提取图像的特征描述符。 -
进行匹配:
使用 knnMatch 方法进行 KNN 匹配,返回每个查询描述符的 K 个最近邻。 -
筛选匹配点:
根据距离比例或其他条件筛选出可靠的匹配点。
2.4 优缺点
优点:
- 高效:比暴力匹配(Brute-Force Matcher)更快,特别适合处理高维数据。
- 灵活:支持多种算法和参数配置,可以根据需求调整精度和速度。
缺点:
- 近似匹配:结果是近似的,可能存在一定的误差。
- 参数调优:需要根据具体任务调整参数,否则可能影响匹配效果。
3 函数
3.1 特征检测匹配
- 特征关键点检测
- sift = cv2.SIFT_create(),创建 SIFT 特征检测器
- kp1, des1 = sift.detectAndCompute(src, None),检测并计算 src 图像的关键点(kp1) 和描述符(des1 )
- 匹配器匹配
- flann = cv2.FlannBasedMatcher(),创建FLANN 匹配器
- matches = flann.knnMatch(des1, des2, 2) , 使用 KNN 算法进行特征(des1, des2)匹配,k=2 表示每个描述符返回两个最佳匹配
3.2 匹配符合条件点并绘制
ok = [] # 存储符合条件的匹配点
ok_n = [] # 存储对应的次佳匹配点# 遍历所有匹配点
for m, n in matches:
# 如果最佳匹配点的距离小于次佳匹配点距离的 0.65 倍,则认为是一个好的匹配if m.distance < 0.65 * n.distance:ok.append(m) # 将好的匹配点加入 ok 列表ok_n.append(n) # 将对应的次佳匹配点加入 ok_n 列表# 计算好的匹配点的数量
num = len(ok)# 如果好的匹配点数量大于等于 400,则认为验证通过
if num >= 400:result = '认证通过' # 设置验证结果为通过# 遍历所有匹配点for m, n in matches:# 再次筛选好的匹配点if m.distance < 0.65 * n.distance:ok.append(m)x1 = int(kp1[m.queryIdx].pt[0])y1 = int(kp1[m.queryIdx].pt[1])x2 = int(kp2[n.queryIdx].pt[0])y2 = int(kp2[n.queryIdx].pt[1])src = cv2.circle(src, (x1, y1), 3, (0, 0, 255), -1)model = cv2.circle(model, (x2, y2), 3, (0, 0, 255), -1)
3 代码测试
3.1 单个指纹模板匹配
图片1:
图片2:
模板:
代码展示:
import cv2
def cv_chow(name,img):cv2.imshow(name,img)cv2.waitKey(0)
def verification(src,model):sift =cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(src, None)kp2, des2 = sift.detectAndCompute(model, None)flann = cv2.FlannBasedMatcher()matches = flann.knnMatch(des1, des2, 2)ok = []ok_n = []for m, n in matches:if m.distance < 0.65 * n.distance:ok.append(m)ok_n.append(n)## m,n,在kp的ptnum = len(ok)if num>=400:result = '认证通过'for m, n in matches:if m.distance < 0.65 * n.distance:ok.append(m)x1 = int(kp1[m.queryIdx].pt[0])y1 = int(kp1[m.queryIdx].pt[1])x2 = int(kp2[n.queryIdx].pt[0])y2 = int(kp2[n.queryIdx].pt[1])src = cv2.circle(src, (x1, y1), 3, (0, 0, 255), -1)model = cv2.circle(model, (x2, y2), 3, (0, 0, 255), -1)cv_chow('src', src)cv_chow('model', model)else:result = '认证失败'return resultif __name__=='__main__':src1 = cv2.imread('zhiwen1.bmp')cv_chow('src1',src1)src2 = cv2.imread('zhiwen2.bmp')cv_chow('src2', src2)model = cv2.imread('zhiwenp.bmp')cv_chow('model_', model)result1 = verification(src1,model)result2 = verification(src2, model)print(f'src1验证结果:{result1}')print(f'src2验证结果:{result2}')
运行结果:
3.2 多个指纹匹配
指纹文件库:
代码展示:
import osdef getNum(src,model):img1 = cv2.imread(src)img2 = cv2.imread(model)sift = cv2.SIFT_create()kp1, des1 = sift.detectAndCompute(img1, None)kp2, des2 = sift.detectAndCompute(img2, None)flann = cv2.FlannBasedMatcher()matches = flann.knnMatch(des1, des2, 2)ok = []for m, n in matches:if m.distance < 0.8 * n.distance:ok.append(m)num = len(ok)return numdef getID(src,database):max = 0for file in os.listdir(database):print(file)model = os.path.join(database,file)num = getNum(src,model)print(f'文件名:{file},匹配点个数:{num}')if num>max:max = numname = fileID = name[0]if max<100:ID = 9999return IDdef getname(ID):nameID = {0:'张三',1:'李四',2:'王五',3:'赵六',4:'朱老七',5:'钱八',6:'曹九',7:'王二麻子',8:'andy',9:'Anna',9999:'没找到'}name = nameID.get(int(ID))return nameif __name__=='__main__':src = "scrpp.bmp"database = "database//database"ID = getID(src,database)name = getname(ID)print(f'识别结果:{name}')
运行结果:
相关文章:

Opencv之sift特征检测和FLANN 匹配器进行指纹特征匹配
sift特征检测和FLANN 匹配器进行指纹匹配 目录 sift特征检测和FLANN 匹配器进行指纹匹配1 sift特征检测1.1 概念1.2 优缺点 2 FLANN 匹配器2.1 概念2.2 工作原理与匹配方式2.3 FLANN 匹配器的使用步骤2.4 优缺点 3 函数3.1 特征检测匹配3.2 匹配符合条件点并绘制 3 代码测试3.1…...
rust学习~tokio的io
await Suspend execution until the result of a Future is ready. 暂停执行,直到一个 Future 的结果就绪。 .awaiting a future will suspend the current function’s execution until the executor has run the future to completion. 对一个 Future 使用 .awa…...
FPGA开发,使用Deepseek V3还是R1(2):V3和R1的区别
以下都是Deepseek生成的答案 FPGA开发,使用Deepseek V3还是R1(1):应用场景 FPGA开发,使用Deepseek V3还是R1(2):V3和R1的区别 FPGA开发,使用Deepseek V3还是R1&#x…...
本地部署大数据集群前置准备
1. 设置VMware网段 虚拟网络编辑器——更改设置——选择VMnet8——子网改成192.168.88.0——NAT设置——网关设置为192.168.88.2 2. 下载CentOS操作系统 下载CentOS 7.6(1810)版本 3. 在VMware中安装CentOS操作系统 创建新的虚拟机——典型——安装光盘映像文件——输入账…...

Spring Boot整合RabbitMQ
1. 环境准备 Spring Boot 2.1.3.RELEASERabbitMQ 3.xJDK 8 或以上Maven 3.5 2. 安装Erlang、RabbitMQ 2.1 安装前准备 RabbitMQ 依赖 Erlang 环境,需确保两者的版本匹配,官方兼容性参考:RabbitMQ & Erlang 版本对照表。 2.2 下载安…...

CDefView::_OnFSNotify函数分析
进入CDefView::_OnFSNotify函数时状态栏 _UpdateStatusBar函数之后增加一个对象,变成7个对象。 LRESULT CDefView::_OnFSNotify(LONG lNotification, LPCITEMIDLIST* ppidl) { LPITEMIDLIST pidl; LPCITEMIDLIST pidlItem; // we may be registered for no…...
精准汇报:以明确答复助力高效工作
在工作场景中,汇报工作是一项至关重要的沟通环节,它不仅关乎工作进展的有效传达,更影响着团队协作的顺畅度和整体工作效率。而汇报工作的关键,就在于给予明确肯定的答复,摒弃“应该”“可能”这类模糊词汇,…...

Java自动拆箱装箱/实例化顺序/缓存使用/原理/实例
在 Java 编程体系中,基本数据类型与包装类紧密关联,它们各自有着独特的特性和应用场景。理解两者之间的关系,特别是涉及到拆箱与装箱、实例化顺序、区域问题、缓存问题以及效率问题。 一、为什么基本类型需要包装类 泛型与集合的需求 Java…...
软件工程---基于构件的软件工程
基于构件的软件工程(CBSE)是一种软件开发方法,通过重用现有的软件构件来构建系统,从而提高开发效率和软件质量。这种方法强调软件系统的模块化设计和构建复用,使得软件开发过程更加高效和灵活。 企业软件开发…...
AMD RDNA3 GPU架构解析
本文会通过把AMD的RDNA3架构为例比喻为**“施工公司”**工作模式,深入理解GPU如何高效处理顶点着色、像素计算等任务。 一、施工公司的组织架构 1. 施工公司(WGP)与施工队(CU) WGP(Work Group Processor&…...
docker关闭mysql端口映射的使用
需求 项目中的数据库为mysql,如果将端口映射到宿主机上,容易被工具扫描出,且随着国产化的进程推进,mysql将不被允许。为了提高安全性与满足项目需求,这里采用隐藏mysql端口方式,不映射宿主机端口ÿ…...

关于对机器中的人工智能进行基准测试
大家读完觉得有帮助记得及时关注和点赞!!! 抽象 最近的基准研究声称,AI 在各种认知任务上的表现已经接近甚至超过人类的“水平”。然而,本立场文件认为,当前的 AI 评估范式不足以评估类似人类的认知能力。我…...
CSS - 妙用Sass
官方文档:https://www.sass.hk/docs/ 1.例1: each $theme in $themeList {$themeKey: map-get($theme, key);media screen and (weex-theme: $themeKey) {.btnText {max-width: 150px;include font(map-get($theme, medFont),map-get($theme, subFontS…...
MS模块创新
1. 动态分支权重融合 创新思路:引入通道注意力机制,自动学习高频/低频分支的融合权重 class DynamicMS(nn.Module):def __init__(self, in_channels1):super().__init__()# 原高频/低频分支保持不变self.high_freq ... # 与原MS模块相同self.low_freq…...

私有化部署DeepSeek并SpringBoot集成使用(附UI界面使用教程-支持语音、图片)
私有化部署DeepSeek并SpringBoot集成使用(附UI界面使用教程-支持语音、图片) windows部署ollama Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计 下载ollama 下载地址(…...
MFC中CMutex类和CSingleLock类,配合使用疑惑
在使用CMutex过程中,看到别人使用了CSingleLock类,想着明明CMutex已经可以实现线程同步了,为什么还有使用CSingleLock类呢? 在MFC中,虽然CMutex类本身可以实现线程同步,但通常会与CSingleLock类一起使用&am…...
残差收缩模块
1. 多尺度阈值生成 创新思路:融合不同尺度的统计信息(如平均池化最大池化)生成更鲁棒的阈值。 class MultiScaleShrinkage(nn.Module):def __init__(self, channel, reduction4):super().__init__()# 多尺度池化分支self.avg_pool nn.Adap…...
HOW - 在Windows浏览器中模拟MacOS的滚动条
目录 一、原生 CSS 代码实现模拟 macOS 滚动条额外优化应用到某个特定容器 二、Antd table中的滚动条场景三、使用第三方工具/扩展 如果你想让 Windows 里的滚动条 模拟 macOS 的效果(细窄、圆角、隐藏默认轨道)。 可以使用以下几种方案: 一…...

Unity 打包后EXE运行出现Field to Load il2cpp的一种情况
Unity版本2021.3.13f1c1 #if DEVELOPMENT_BUILDA1 A1 10600;#else#endif 使用 #if DEVELOPMENT_BUILD然后在下面面板使用Development Build。打包后会运行游戏EXE出现Field to Load il2cpp。 解决办法是换成IF ELSE,自己代码设置个开关、 文心一言: …...
Windows 环境下 Nginx、PHP 与 ThinkPHP 开发环境搭建
Windows 环境下 Nginx、PHP 与 ThinkPHP 开发环境搭建 目录 安装 Nginx 和 PHP配置 Nginx配置 PHP启动服务ThinkPHP 配置常见问题排查 1. 安装 Nginx 和 PHP 安装 Nginx 访问 Nginx 官网 下载 Windows 版本解压到指定目录,如 C:\nginx 安装 PHP 访问 PHP 官网…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

中南大学无人机智能体的全面评估!BEDI:用于评估无人机上具身智能体的综合性基准测试
作者:Mingning Guo, Mengwei Wu, Jiarun He, Shaoxian Li, Haifeng Li, Chao Tao单位:中南大学地球科学与信息物理学院论文标题:BEDI: A Comprehensive Benchmark for Evaluating Embodied Agents on UAVs论文链接:https://arxiv.…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

多模态大语言模型arxiv论文略读(108)
CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题:CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者:Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

LLMs 系列实操科普(1)
写在前面: 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容,原视频时长 ~130 分钟,以实操演示主流的一些 LLMs 的使用,由于涉及到实操,实际上并不适合以文字整理,但还是决定尽量整理一份笔…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...