MS模块创新
1. 动态分支权重融合
创新思路:引入通道注意力机制,自动学习高频/低频分支的融合权重
class DynamicMS(nn.Module):def __init__(self, in_channels=1):super().__init__()# 原高频/低频分支保持不变self.high_freq = ... # 与原MS模块相同self.low_freq = ... # 与原MS模块相同# 动态权重生成(SE模块变体)self.channel_att = nn.Sequential(nn.AdaptiveAvgPool1d(1),nn.Conv1d(32, 32//4, 1),nn.ReLU(),nn.Conv1d(32//4, 2, 1), # 输出两个分支的权重nn.Softmax(dim=1) # 确保权重和为1)def forward(self, x):identity = self.res_adjust(x)high = self.high_freq(x)low = self.low_freq(x)fused = torch.cat([high, low], dim=1) # (B,32,2048)# 动态权重融合weights = self.channel_att(fused) # (B,2,1)weighted_fused = weights[:,0:1] * high + weights[:,1:2] * lowreturn self.pool(weighted_fused + identity)
2. 跨尺度特征交互
创新思路:在分支间建立特征交互路径,增强信息流通
class InteractiveMS(nn.Module):def __init__(self, in_channels=1):super().__init__()# 高频分支增加跨连接self.high_conv1 = nn.Conv1d(in_channels, 8, 3, padding=1)self.low_to_high = nn.Conv1d(8, 8, 3, padding=1) # 低频特征注入# 低频分支增加跨连接self.low_conv1 = nn.Conv1d(in_channels, 8, 64, padding=31)self.high_to_low = nn.Conv1d(8, 8, 3, padding=1) # 高频特征注入# 后续层保持不变...def forward(self, x):# 第一阶段特征交互high_stage1 = self.high_conv1(x)low_stage1 = self.low_conv1(x)# 跨分支特征融合high_stage1 += self.low_to_high(low_stage1) # 注入低频信息low_stage1 += self.high_to_low(high_stage1) # 注入高频信息# 继续后续处理high = self.high_conv2(high_stage1)low = self.low_conv2(low_stage1)# 后续流程与原MS相同...
3. 可变形卷积增强感受野
创新思路:用可变形卷积替代固定卷积核,自适应特征形状
class DeformableMS(nn.Module):def __init__(self, in_channels=1):super().__init__()# 可变形卷积层(需安装DCNv2)from mmcv.ops import DeformConv1dPackself.low_freq = nn.Sequential(DeformConv1dPack(in_channels,8,kernel_size=64,padding=31), # 可变形卷积nn.BatchNorm1d(8),nn.ReLU(),# 后续层保持不变...)
4. 时序金字塔结构
创新思路:构建多级时序下采样路径,捕获多粒度特征
class PyramidMS(nn.Module):def __init__(self, in_channels=1):super().__init__()# 三级金字塔分支self.branch1 = nn.Sequential( # 原始尺度nn.Conv1d(in_channels,8,3,padding=1),nn.Conv1d(8,16,3,padding=1))self.branch2 = nn.Sequential( # 1/2下采样nn.MaxPool1d(2),nn.Conv1d(in_channels,8,5,padding=2),nn.Conv1d(8,16,5,padding=2))self.branch3 = nn.Sequential( # 1/4下采样nn.MaxPool1d(4),nn.Conv1d(in_channels,8,7,padding=3),nn.Conv1d(8,16,7,padding=3))# 特征融合层self.fusion = nn.Sequential(nn.Conv1d(48,32,1), # 3*16=48nn.Upsample(scale_factor=2)) # 恢复分辨率
5. 轻量化混合空洞卷积
创新思路:使用空洞卷积替代大卷积核,减少参数
class LightMS(nn.Module):def __init__(self, in_channels=1):super().__init__()# 低频分支改用空洞卷积self.low_freq = nn.Sequential(nn.Conv1d(in_channels,8,3,dilation=16,padding=16*1), # 等效64感受野nn.BatchNorm1d(8),nn.ReLU(),nn.Conv1d(8,16,3,dilation=4,padding=4*1), # 等效16感受野# 后续层保持不变...)# 参数从64*8=512减少到3*8=24(仅第一层)
6. 动态核参数生成
创新思路:根据输入特征动态生成卷积权重
class DynamicConvMS(nn.Module):def __init__(self, in_channels=1):super().__init__()# 动态核生成器self.kernel_gen = nn.Sequential(nn.AdaptiveAvgPool1d(1),nn.Linear(2048, 64*8) # 生成64大小卷积核参数)def forward(self, x):# 动态生成低频分支的卷积核kernel = self.kernel_gen(x.transpose(1,2)) # (B, 64*8)kernel = kernel.view(-1,8,64) # (B,8,64)# 执行深度可分离动态卷积low_feat = F.conv1d(x, kernel, groups=8, padding=31)# 后续处理...
优化方向对比表
优化方向 | 核心创新 | 优势 | 适用场景 |
---|---|---|---|
动态权重融合 | SE注意力机制 | 自适应特征重要性 | 特征差异显著的场景 |
跨尺度交互 | 分支间特征注入 | 增强信息流动性 | 复杂模式识别 |
可变形卷积 | 自适应感受野形状 | 提升几何形变鲁棒性 | 非平稳信号处理 |
时序金字塔 | 多级下采样路径 | 捕获多粒度时序模式 | 长程依赖建模 |
混合空洞卷积 | 空洞卷积替代大核 | 参数效率提升50%+ | 资源受限环境 |
动态核生成 | 输入自适应卷积参数 | 动态适应信号特性 | 多变工况条件 |
组合创新建议
-
工业振动信号诊断:
采用可变形卷积
+动态权重融合
,增强对非平稳冲击特征的捕捉能力 -
实时边缘计算场景:
使用混合空洞卷积
+轻量化设计
,在保持性能的同时降低80%计算量 -
多工况自适应场景:
结合动态核生成
+跨尺度交互
,实现不同工况下的自适应特征提取
建议通过特征可视化(如Grad-CAM)分析现有模块的局限性,针对性选择优化方案。例如若发现高频特征未被有效利用,可优先尝试动态权重融合方案。
相关文章:
MS模块创新
1. 动态分支权重融合 创新思路:引入通道注意力机制,自动学习高频/低频分支的融合权重 class DynamicMS(nn.Module):def __init__(self, in_channels1):super().__init__()# 原高频/低频分支保持不变self.high_freq ... # 与原MS模块相同self.low_freq…...

私有化部署DeepSeek并SpringBoot集成使用(附UI界面使用教程-支持语音、图片)
私有化部署DeepSeek并SpringBoot集成使用(附UI界面使用教程-支持语音、图片) windows部署ollama Ollama 是一个开源框架,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计 下载ollama 下载地址(…...
MFC中CMutex类和CSingleLock类,配合使用疑惑
在使用CMutex过程中,看到别人使用了CSingleLock类,想着明明CMutex已经可以实现线程同步了,为什么还有使用CSingleLock类呢? 在MFC中,虽然CMutex类本身可以实现线程同步,但通常会与CSingleLock类一起使用&am…...
残差收缩模块
1. 多尺度阈值生成 创新思路:融合不同尺度的统计信息(如平均池化最大池化)生成更鲁棒的阈值。 class MultiScaleShrinkage(nn.Module):def __init__(self, channel, reduction4):super().__init__()# 多尺度池化分支self.avg_pool nn.Adap…...
HOW - 在Windows浏览器中模拟MacOS的滚动条
目录 一、原生 CSS 代码实现模拟 macOS 滚动条额外优化应用到某个特定容器 二、Antd table中的滚动条场景三、使用第三方工具/扩展 如果你想让 Windows 里的滚动条 模拟 macOS 的效果(细窄、圆角、隐藏默认轨道)。 可以使用以下几种方案: 一…...

Unity 打包后EXE运行出现Field to Load il2cpp的一种情况
Unity版本2021.3.13f1c1 #if DEVELOPMENT_BUILDA1 A1 10600;#else#endif 使用 #if DEVELOPMENT_BUILD然后在下面面板使用Development Build。打包后会运行游戏EXE出现Field to Load il2cpp。 解决办法是换成IF ELSE,自己代码设置个开关、 文心一言: …...
Windows 环境下 Nginx、PHP 与 ThinkPHP 开发环境搭建
Windows 环境下 Nginx、PHP 与 ThinkPHP 开发环境搭建 目录 安装 Nginx 和 PHP配置 Nginx配置 PHP启动服务ThinkPHP 配置常见问题排查 1. 安装 Nginx 和 PHP 安装 Nginx 访问 Nginx 官网 下载 Windows 版本解压到指定目录,如 C:\nginx 安装 PHP 访问 PHP 官网…...
Redis100道高频面试题
一、Redis基础 Redis是什么?主要应用场景有哪些? Redis 是一个开源的、基于内存的数据结构存储系统,支持多种数据结构(如字符串、哈希、列表、集合等),可以用作数据库、缓存和消息中间件。 主要应用场景&…...
登录服务器后如何找到对应的drupal所在的文件夹
在服务器上找不到 Drupal 安装目录的原因可能有以下几种: 多站点配置: Drupal 支持多站点设置,即在同一安装中托管多个网站。在这种配置下,每个站点都有自己的设置和文件夹,通常位于 sites 目录下。例如,站…...

win32汇编环境,窗口程序中使控件子类化的示例一
;运行效果 ;win32汇编环境,窗口程序中使编辑框控件子类化的示例一 ;窗口子类化,就是把某种控件,自已再打造一遍,加入自已的功能。比如弄个特殊形状的按钮,或只能输入特殊字符的编辑框 ;当然,一般来说,这都是…...

专业工具,杜绝一切垃圾残留!
在安装大多数软件时均会在系统注册表中创建相应的条目。如果卸载后仍然存在注册表残留,可能会导致再次安装时出现失败,同时也会对系统性能和存储空间产生负面影响。常见的卸载残留包括注册表项、程序文件夹、用户数据文件夹、临时文件以及相关插件等。 …...
java 实现简易基于Dledger 的选举
java 实现简易基于Dledger 的选举 1. 定义 Dledger 节点类,包含节点的状态、日志存储、选举和日志复制逻辑 import java.util.ArrayList; import java.util.List; import java.util.Random; import java.util.concurrent.Executors; import java.util.concurrent.S…...

大数据“调味“ ,智慧“添香“,看永洪科技助力绝味食品数字化新征程
近年来,随着国家数字化政策不断出台、新兴技术不断进步、企业内生需求持续释放,数字化转型逐步成为企业实现高质量发展的必由之路,成为企业实现可持续发展乃至弯道超车的重要途径。 在全国数字化浪潮驱动下,以人工智能、互联网、…...

【嵌入式】MQTT
MQTT 文章目录 MQTT安装简介MQTT客户端代码 安装 安装Paho MQTT C库: sudo apt-get install libpaho-mqtt3-dev头文件包含: #include "MQTTClient.h"编译选项: gcc -o $ $^ -lpaho-mqtt3c简介 MQTT协议全称是(Message Queuing…...
vue原理面试题
以下是一些关于Vue原理的面试题: 一、虚拟DOM与响应式系统 Vue中的虚拟DOM是如何工作的? 答案: 当Vue组件的数据发生变化时,Vue首先会在虚拟DOM中构建一个新的虚拟DOM树来表示更新后的组件结构。然后,Vue会将新的虚拟DOM树与旧的虚拟DOM树进行比较(这个过程称为Diff算法…...

office集成deepseek插件,office集成deepseek教程(附安装包)
文章目录 前言一、下载与安装OfficeAI 助手二、获取 DeepSeek 的 API key三、在 OfficeAI 助手中配置 DeepSeek API key四、使用 OfficeAI 助手功能 前言 本教程将为你详细讲解 Office 集成 DeepSeek 的安装步骤和使用方法,助你轻松拥抱智能办公新时代,…...

行业洞察|安踏、迪桑特、始祖鸟、昂跑、lululemon等运动户外品牌的「营销创新和会员运营」对比解读
商派助力国际知名鞋品牌OMS系统全面升级,拓展业务类型和营销玩法! 一、业务模式创新:打破传统边界,构建多维竞争力 近年来,户外运动品牌在业务模式上的革新呈现三大趋势:DTC模式深化、多品牌矩阵重构、技术…...

小鹏汽车申请注册“P7 Ultra”商标 或为P7车型升级版铺路
大湾区经济网品牌工程频道报道,据企查查APP显示,广东小鹏汽车科技有限公司近日提交“P7 Ultra”商标注册申请,国际分类为运输工具,当前状态为“注册申请中”。业内推测,此举或为小鹏P7车型高端版本量产上市做准备。 作…...
数列极限入门习题
数列极限入门习题 lim n → ∞ ( 1 1 2 1 3 ⋯ 1 n ) 1 n \lim\limits_{n\rightarrow\infty}(1 \frac{1}{2}\frac{1}{3}\cdots\frac{1}{n})^{\frac{1}{n}} n→∞lim(12131⋯n1)n1 lim n → ∞ ( 1 n 1 1 n 2 ⋯ 1 n n ) \lim\limits_{n\rightarrow\…...

ubuntu部署gitlab-ce及数据迁移
ubuntu部署gitlab-ce及数据迁移 进行前梳理: 在esxi7.0 Update 3 基础上使用 ubuntu22.04.5-server系统对 gitlab-ce 16.10进行部署,以及将gitlab-ee 16.9 数据进行迁移到gitlab-ce 16.10 进行后总结: 起初安装了极狐17.8.3-jh 版本(不支持全局中文,就没用了) …...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

DAY 47
三、通道注意力 3.1 通道注意力的定义 # 新增:通道注意力模块(SE模块) class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...
DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”
目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...
Java线上CPU飙高问题排查全指南
一、引言 在Java应用的线上运行环境中,CPU飙高是一个常见且棘手的性能问题。当系统出现CPU飙高时,通常会导致应用响应缓慢,甚至服务不可用,严重影响用户体验和业务运行。因此,掌握一套科学有效的CPU飙高问题排查方法&…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...

STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...

spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...

Unity VR/MR开发-VR开发与传统3D开发的差异
视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...
CppCon 2015 学习:Time Programming Fundamentals
Civil Time 公历时间 特点: 共 6 个字段: Year(年)Month(月)Day(日)Hour(小时)Minute(分钟)Second(秒) 表示…...

【免费数据】2005-2019年我国272个地级市的旅游竞争力多指标数据(33个指标)
旅游业是一个城市的重要产业构成。旅游竞争力是一个城市竞争力的重要构成部分。一个城市的旅游竞争力反映了其在旅游市场竞争中的比较优势。 今日我们分享的是2005-2019年我国272个地级市的旅游竞争力多指标数据!该数据集源自2025年4月发表于《地理学报》的论文成果…...