GCC RISCV 后端 -- GCC 后端框架的一些理解
GCC 已经提供了一整套的编译框架,从前端(Frontend / GENERIC-Tree)对编程语言的语法语义处理,到中端(Middle-End / GIMPLE-Tree)的目标机器无关(Target Indepndent)的优化处理,再到后端(Backend / RTL)的目标机器相关的处理,即目标机器码生成(Code - Generation)的相关处理。整个流程,GCC都已经提供了一个框架。因此,对于不同部分的新增功能,只要对框架中对应部分进行修改即可。
如,需要新增一个目标机器的后端,最主要的两个部分是:
1. 通过 GCC 定义的机器描述语言(Machine Description Language),其语法为GCC后端中间语言(RTL),用以描述目标机器的指令架构(ISA)等指令特征。
2. 通过头文件(.h)与源文件(.c),重新定义(redefine)GCC后端框架中的可配置的变量、函数。主要通过宏定义(Macro)进行重新定义。
这样,GCC 框架就能获取足够的目标机器信息,从而生成对应的编译器。因此,基于GCC框架,精确地把目标机器的信息提供给GCC,让GCC能够生成高质量的编译器。
由此,掌握GCC,主要要了解 GCC 提供的框架及其提供的可配置点与配置方式(是通过宏定义,还是通过描述语言,还是通过对应函数指针)。
GCC使用一系列的机制,使得通过不同方式提供的目标机器信息,揉合进其编译框架类,最终生成对应目标机器的编译器。
另外,在GCC框架中,处理过程是用 Pass 的方式进行组织。也就是说,从处理流程的角度看,C程序源代码经过一系列的变换,最终形成对应目标机器的汇编程序。其中的一系列变换就是一系列的处理过程,也就是一系列的 pass 组织起来对其上下代码的处理。其中,后端的处理过程是基于 RTL 中间语言(IR)进行处理。在不同的后端处理过程中,其处理过程需要目标机器的信息,那么,就通过上述两个机制(机器描述语言、宏定义)来提供。
例如,指令调度的处理,需要知道每条指令的执行特性,计算指令的执行时延等,这就需要机器描述语言中对指令的描述及目标机器的处理单元的流水特性的描述。
因此,在新增一个GCC的后端,需要从两个角度去看,一个是目标信息提供的角度,另一个是从后端处理流程的角度。多数情况是从目标信息提供的角度出发,编写对应信息提供方式。
相关文章:
GCC RISCV 后端 -- GCC 后端框架的一些理解
GCC 已经提供了一整套的编译框架,从前端(Frontend / GENERIC-Tree)对编程语言的语法语义处理,到中端(Middle-End / GIMPLE-Tree)的目标机器无关(Target Indepndent)的优化处理&#…...
FastGPT 源码:如何实现 “问题优化“
文章目录 FastGPT 源码:如何实现 "问题优化"一、前言二、源码分析2.1 queryExtension.ts 提示词2.2 queryExtension.ts 核心逻辑2.3 queryExtension 引用位置 三、流程总结 FastGPT 源码:如何实现 “问题优化” 一、前言 问题优化的背景和目…...
CSS—flex布局、过渡transition属性、2D转换transform属性、3D转换transform属性
1.flex布局 也叫弹性布局,是浏览器提倡的布局模型,非常适合结构化布局,提供了强大的空间分布和对齐能力,不会产生浮动布局中脱标现象,布局网页更简单,更灵活。 flex容器属性: 属性描述d…...
Spring Boot Gradle 项目中使用 @Slf4j 注解
Spring Boot Gradle 项目中,如果想使用 Slf4j 注解来启用日志记录,首先需要添加 Lombok 和 SLF4J 的依赖。可以通过以下步骤来添加它们: 1. 添加 Lombok 依赖 在 build.gradle 文件中添加以下 Lombok 依赖: dependencies {impl…...
FreeRTOS系列---程序正常,但任务无法创建
实验环境 stm32F103RCT6核心板 keil5 vscode stm32cubemx 使用stm32cubemx 问题现场 void my_task_init(void) {xTaskCreate(LED1_Task, "LED1_Task", configMINIMAL_STACK_SIZE, NULL, 1, NULL);xTaskCreate(LED2_Task, "LED2_Task", configMINIMA…...
linux应用:errno、perror、open、fopen
errno errno 是一个全局变量,定义在 头文件中。当系统调用(如 open、read、write 等)或库函数执行失败时,会将一个错误码赋值给 errno。不同的错误码代表不同的错误类型,通过检查 errno 的值,可以判断具体…...
物联网中的气象监测设备具备顶级功能
物联网中的气象监测设备具备顶级功能时,通常集成GPS、数据上报和预警系统,以确保精准监测和及时响应。以下是这些功能的详细说明: 1. GPS定位 精准定位:GPS模块提供设备的精确地理位置,确保数据与具体位置关联&#…...
15-YOLOV8OBB损失函数详解
一、YOLO OBB支持的OBB 在Ultralytics YOLO 模型中,OBB 由YOLO OBB 格式中的四个角点表示。这样可以更准确地检测到物体,因为边界框可以旋转以更好地适应物体。其坐标在 0 和 1 之间归一化: class_index x1 y1 x2 y2 x3 y3 x4 y4 YOLO 在内部处理损失和输出是xywhr 格式,x…...
WHAT - 前端异步事件流处理场景梳理
目录 一、典型场景二、解决方案与技术选型1. 基础异步控制2. 状态管理方案3. 复杂任务调度4. 任务取消机制5. 微任务队列优化 三、最佳实践建议四、工具链推荐 前端异步任务流处理是现代Web开发中常见的需求,尤其在复杂业务逻辑、高交互性应用中不可或缺。以下是常见…...
计算机网络软考
1.物理层 1.两个主机之间发送数据的过程 自上而下的封装数据,自下而上的解封装数据,实现数据的传输 2.数据、信号、码元 码元就是数字通信里用来表示信息的基本信号单元。比如在二进制中,用高电平代表 “1”、低电平代表 “0”,…...
安防监控/视频集中存储EasyCVR视频汇聚平台如何配置AI智能分析平台的接入?
EasyCVR安防视频监控平台不仅支持AI边缘计算智能硬件设备的接入,还能快速集成AI智能分析平台,接收来自智能分析平台或设备的AI告警信息,如烟火检测、周界入侵检测、危险区域闯入检测、安全帽/反光衣佩戴检测等。 本文将详细介绍如何在EasyCVR…...
做小程序开发的安全防护全方案
小程序开发安全防护方案 为了确保小程序在开发过程中的安全性,以下是一个全面的防护方案: 1. 需求分析与规划 功能模块分析:明确小程序的功能模块,识别高风险区域如用户登录和支付功能。数据分类分级:将数据分为敏感…...
在Spring Boot项目中导出复杂对象到Excel文件
在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel等库来简化操作。这里我们将详细介绍如何使用Hutool和EasyExcel两种方式来实现这一功能。 使用Hutool导出复杂对象到Excel 首先确保你的pom.xml中添加了Hutool的依赖: <depe…...
从JDBC到数据库连接池:构建高性能Java应用的基石(中篇)
推荐关联阅读:JDBC核心技术解析:从基础连接到ORM演进之路(上) 一、JDBC的困境与连接池的救赎 1.1 传统JDBC的致命缺陷 在Java应用与数据库交互的原始模式中,开发者通过DriverManager.getConnection()获取数据库连接…...
JavaWeb后端基础(6)
主键返回 例子: /** * 新增员工数据 */ Options(useGeneratedKeys true, keyProperty "id") Insert("insert into emp(username, name, gender, phone, job, salary, image, entry_date, dept_id, create_time, update_time) " "value…...
nio多线程版本
多线程多路复用 多线程NIO,,就是多个线程,每个线程上都有一个Selector,,,比如说一个系统中一个线程用来接收请求,,剩余的线程用来读写数据,,每个线程独立干自…...
Electron、Tauri及其它跨平台方案终极对比
Electron、Tauri及跨平台方案终极对比(2025版) 一、核心框架深度解析 1.1 Electron:Web技术的桌面霸主 技术架构 基于Chromium(浏览器内核) Node.js(后端运行时)的双进程架构,支持…...
蓝桥杯试题:二分查找
一、问题描述 给定 n 个数形成的一个序列 a,现定义如果一个连续子序列包含序列 a 中所有不同元素,则该连续子序列便为蓝桥序列,现在问你,该蓝桥序列长度最短为多少? 例如 1 2 2 2 3 2 2 1,包含 3 个不同的…...
MongoDB Chunks核心概念与机制
1. 基础定义 Chunk(块):MongoDB分片集群中数据的逻辑存储单元,由一组连续的片键(Shard Key)范围数据组成,默认大小为64MB(可调整范围为1-1024MB)。数据分…...
决策树(Decision Tree):机器学习中的经典算法
1. 什么是决策树? 决策树(Decision Tree)是一种基于树形结构的机器学习算法,适用于分类和回归任务。其核心思想是通过一系列的规则判断,将数据集不断划分,最终形成一棵树状结构,从而实现预测目…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力
引言: 在人工智能快速发展的浪潮中,快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型(LLM)。该模型代表着该领域的重大突破,通过独特方式融合思考与非思考…...
ETLCloud可能遇到的问题有哪些?常见坑位解析
数据集成平台ETLCloud,主要用于支持数据的抽取(Extract)、转换(Transform)和加载(Load)过程。提供了一个简洁直观的界面,以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...
Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...
Razor编程中@Html的方法使用大全
文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...
系统掌握PyTorch:图解张量、Autograd、DataLoader、nn.Module与实战模型
本文较长,建议点赞收藏,以免遗失。更多AI大模型应用开发学习视频及资料,尽在聚客AI学院。 本文通过代码驱动的方式,系统讲解PyTorch核心概念和实战技巧,涵盖张量操作、自动微分、数据加载、模型构建和训练全流程&#…...
