FastGPT 引申:基于 Python 版本实现 Java 版本 RRF
文章目录
- FastGPT 引申:基于 Python 版本实现 Java 版本 RRF
- 函数定义
- 使用示例
FastGPT 引申:基于 Python 版本实现 Java 版本 RRF
函数定义
使用 Java 实现 RRF 相关的两个函数:合并结果、过滤结果
import java.util.*;// 搜索结果类型定义
public class SearchDataResponseItem {private String id;private String q;private String a;private List<Score> score;private double rrfScore; // 临时存储RRF分数// 其他字段...// getter和setter方法
}// 分数类型定义
public class Score {private String type;private double value;private int index;// getter和setter方法
}// 搜索结果合并工具类
public class DatasetSearchUtils {/*** RRF搜索结果合并* @param searchResults 搜索结果列表,包含k值和结果列表* @return 合并后的结果*/public static List<SearchDataResponseItem> datasetSearchResultConcat(List<SearchResultGroup> searchResults) {// 过滤空结果searchResults = searchResults.stream().filter(item -> !item.getList().isEmpty()).collect(Collectors.toList());// 处理边界情况if (searchResults.isEmpty()) {return new ArrayList<>();}if (searchResults.size() == 1) {return searchResults.get(0).getList();}// 用Map存储合并结果Map<String, SearchDataResponseItem> resultMap = new HashMap<>();// RRF算法实现for (SearchResultGroup group : searchResults) {int k = group.getK();List<SearchDataResponseItem> list = group.getList();for (int i = 0; i < list.size(); i++) {SearchDataResponseItem data = list.get(i);int rank = i + 1;double score = 1.0 / (k + rank);SearchDataResponseItem record = resultMap.get(data.getId());if (record != null) {// 合并分数List<Score> concatScore = new ArrayList<>(record.getScore());for (Score dataScore : data.getScore()) {Optional<Score> sameScore = concatScore.stream().filter(s -> s.getType().equals(dataScore.getType())).findFirst();if (sameScore.isPresent()) {sameScore.get().setValue(Math.max(sameScore.get().getValue(), dataScore.getValue()));} else {concatScore.add(dataScore);}}// 更新记录record.setScore(concatScore);record.setRrfScore(record.getRrfScore() + score);resultMap.put(data.getId(), record);} else {// 新记录data.setRrfScore(score);resultMap.put(data.getId(), data);}}}// 排序List<SearchDataResponseItem> results = new ArrayList<>(resultMap.values());results.sort((a, b) -> Double.compare(b.getRrfScore(), a.getRrfScore()));// 格式化结果for (int i = 0; i < results.size(); i++) {SearchDataResponseItem item = results.get(i);Optional<Score> rrfScore = item.getScore().stream().filter(s -> s.getType().equals("rrf")).findFirst();if (rrfScore.isPresent()) {rrfScore.get().setValue(item.getRrfScore());rrfScore.get().setIndex(i);} else {Score newScore = new Score();newScore.setType("rrf");newScore.setValue(item.getRrfScore());newScore.setIndex(i);item.getScore().add(newScore);}// 清除临时RRF分数item.setRrfScore(0);}return results;}/*** 按最大Token数过滤结果* @param list 搜索结果列表* @param maxTokens 最大token限制* @return 过滤后的结果*/public static List<SearchDataResponseItem> filterSearchResultsByMaxChars(List<SearchDataResponseItem> list, int maxTokens) {List<SearchDataResponseItem> results = new ArrayList<>();int totalTokens = 0;for (SearchDataResponseItem item : list) {// 注意:这里需要实现countPromptTokens方法int tokens = countPromptTokens(item.getQ() + item.getA());totalTokens += tokens;if (totalTokens > maxTokens + 500) {break;}results.add(item);if (totalTokens > maxTokens) {break;}}// 确保至少返回一条结果if (results.isEmpty() && !list.isEmpty()) {results.add(list.get(0));}return results;}/*** 计算文本的token数量* 注意:这是一个示例实现,实际需要根据具体的分词算法来实现*/private static int countPromptTokens(String text) {// 这里需要实现实际的token计算逻辑// 可以使用各种NLP库或自定义的分词算法return text.length(); // 示例实现}
}// 搜索结果分组类
class SearchResultGroup {private int k;private List<SearchDataResponseItem> list;// getter和setter方法
}
使用示例
// 使用示例
List<SearchResultGroup> searchResults = new ArrayList<>();
// ... 添加搜索结果// 合并结果
List<SearchDataResponseItem> mergedResults = DatasetSearchUtils.datasetSearchResultConcat(searchResults);// 过滤结果
List<SearchDataResponseItem> filteredResults = DatasetSearchUtils.filterSearchResultsByMaxChars(mergedResults, 1500);
相关文章:
FastGPT 引申:基于 Python 版本实现 Java 版本 RRF
文章目录 FastGPT 引申:基于 Python 版本实现 Java 版本 RRF函数定义使用示例 FastGPT 引申:基于 Python 版本实现 Java 版本 RRF 函数定义 使用 Java 实现 RRF 相关的两个函数:合并结果、过滤结果 import java.util.*;// 搜索结果类型定义…...
面试八股文--数据库基础知识总结(3)MySQL优化
目录 1、慢查询 Q1:在mysql中如何定位慢查询? Q2:SQL语句执行很慢,如何分析? 2、索引 Q3:什么是索引? Q4:什么是聚簇索引和非聚簇索引? Q5:什么是回表查…...
汇编前置知识学习 第11-13天
今天要做什么? 1:虚拟机准备环境 2:virtualBox 创建虚拟硬盘,配置bochs文件启动 一: VMDK(VMWare 虚拟机) VDI(VirtualBox虚拟机) VHD(virtual-PC/Hyper-V 虚拟机)…...
springboot在业务层校验对象/集合中字段是否符合要求
springboot在业务层校验对象参数是否必填 1.场景说明2.代码实现 1.场景说明 为什么不在控制层使用Validated或者Valid注解直接进行校验呢?例如通过excel导入数据,将excel数据转为实体类集合后,校验集合中属性是否符合要求。 2.代码实现 定义…...
python二级考试中会考到的第三方库
在 Python 二级考试中,可能会涉及一些常用的第三方库。这些库可以帮助考生更好地理解和应用 Python 编程。以下是一些在 Python 二级考试中可能会用到的第三方库及其简要介绍:1. requests 用途:用于发送 HTTP 请求。安装:pip install requests示例代码:import requestsres…...
Linux中死锁问题的探讨
在 Linux 中,死锁(Deadlock) 是指多个进程或线程因为竞争资源而相互等待,导致所有相关进程或线程都无法继续执行的状态。死锁是一种严重的系统问题,会导致系统资源浪费,甚至系统崩溃。 死锁的定义 死锁是指…...
【实战 ES】实战 Elasticsearch:快速上手与深度实践-2.3.1 避免频繁更新(Update by Query的代价)
👉 点击关注不迷路 👉 点击关注不迷路 👉 点击关注不迷路 文章大纲 Elasticsearch数据更新与删除深度解析:2.3.1 避免频繁更新(Update by Query的代价)案例背景1. Update by Query的内部机制解析1.1 文档更…...
【Python项目】基于Python的书籍售卖系统
【Python项目】基于Python的书籍售卖系统 技术简介:采用Python技术、MYSQL数据库等实现。 系统简介:书籍售卖系统是一个基于B/S结构的在线图书销售平台,主要分为前台和后台两部分。前台系统功能模块分为(1)用户中心模…...
spring boot + vue 搭建环境
参考文档:https://blog.csdn.net/weixin_44215249/article/details/117376417?fromshareblogdetail&sharetypeblogdetail&sharerId117376417&sharereferPC&sharesourceqxpapt&sharefromfrom_link. spring boot vue 搭建环境 一、浏览器二、jd…...
Linux下的shell指令(一)
作业 1> 在终端提示输入一个成绩,通过shell判断该成绩的等级 [90,100] : A [80, 90) : B [70, 80) : C [60, 70) : D [0, 60) : 不及格 #!/bin/bash read -p "请输入学生成绩:" score if [ "$score" -ge 90 ] && [ "$scor…...
JS禁止web页面调试
前言 由于前端在页面渲染的过程中 会调用很多后端的接口,而有些接口是不希望别人看到的,所以前端调用后端接口的行为动作就需要做一个隐藏。 禁用右键菜单 document.oncontextmenu function() {console.log("禁用右键菜单");return false;…...
GIt分支合并
分支 1: C0 → C1 → C2 → C3(最新) 分支 2: C0 → C4 → C5 → C6(最新)1. 找到共同父节点 C0 Git 会先找出 branch1 和 branch2 的共同祖先节点 C0。这通常借助 git merge-base 命令达成,虽然在日常使用 git merge…...
Sqli-labs
1.搭建【前提是已经下载安装好phpstudy_pro】 1.1源码准备 1.1.1源码下载 这里从github下载 https://codeload.github.com/Audi-1/sqli-labs/zip/masterhttps://codeload.github.com/Audi-1/sqli-labs/zip/master 1.1.2下载的靶场源码放到WWW下 将刚才下载的压缩包解压到…...
unreal engine gameplay abiliity 获取ability的cooldown剩余时间
unreal engine gameplay abiliity 获取ability的cooldown 版本 5.4.4 参考 测试代码 if (HasAuthority() && AbilitySystemComponent){TArray<FGameplayAbilitySpecHandle> OutAbilityHandles;AbilitySystemComponent->GetAllAbilities(OutAbilityHandles…...
【GenBI优化】提升text2sql准确率:建议使用推理大模型,增加重试
引言 Text-to-SQL(文本转 SQL)是自然语言处理(NLP)领域的一项重要任务,旨在将自然语言问题自动转换为可在数据库上执行的 SQL 查询语句。这项技术在智能助手、数据分析工具、商业智能(BI)平台等领域具有广泛的应用前景,能够极大地降低数据查询和分析的门槛,让非技术用…...
【六祎 - Note】SQL备忘录;DDL,DML,DQL,DCL
SQL备忘录 from to : 点击访问源地址...
高频 SQL 50 题(基础版)_1341. 电影评分
高频 SQL 50 题(基础版)_1341. 电影评分 思路 思路 (select Users.name results from Users left join MovieRating on Users.user_id MovieRating.user_id group by(Users.name) order by count(MovieRating.movie_id) desc,Users.name asc limit 1) u…...
JavaScript 变量命名规范
在编写JavaScript代码时,选择合适的变量名对于代码的清晰度、可读性和可维护性至关重要。一个良好的变量命名规范不仅能帮助团队成员更好地理解代码意图,还能减少错误发生的可能性。本文将介绍一些广泛接受的JavaScript变量命名规则和最佳实践。 命名的…...
解决 uView-UI和uv-ui 中 u-tabs 组件在微信小程序中出现横向滚动条的问题
问题描述 在微信小程序中使用 uView-UI 的 u-tabs 组件时,用户可能会遇到横向滚动条的问题。这不仅影响了页面的美观,还可能导致用户误操作。 问题原因 该问题的根本原因是未在微信小程序环境下屏蔽滚动条。uView-UI 的 u-tabs 组件默认只在 H5 环境下…...
20250304解决在飞凌的OK3588-C的Linux R4下解决使用gstreamer保存的mp4打不开
sync poweroff rootok3588:/# sync rootok3588:/# sync rootok3588:/# cd 107 rootok3588:/107# ls -l total 0 rootok3588:/107# sync rootok3588:/107# poweroff 20250304解决在飞凌的OK3588-C的Linux R4下解决使用gstreamer保存的mp4打不开 2025/3/4 10:58 缘起:…...
React 第五十五节 Router 中 useAsyncError的使用详解
前言 useAsyncError 是 React Router v6.4 引入的一个钩子,用于处理异步操作(如数据加载)中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误:捕获在 loader 或 action 中发生的异步错误替…...
SkyWalking 10.2.0 SWCK 配置过程
SkyWalking 10.2.0 & SWCK 配置过程 skywalking oap-server & ui 使用Docker安装在K8S集群以外,K8S集群中的微服务使用initContainer按命名空间将skywalking-java-agent注入到业务容器中。 SWCK有整套的解决方案,全安装在K8S群集中。 具体可参…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
MinIO Docker 部署:仅开放一个端口
MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...
相关类相关的可视化图像总结
目录 一、散点图 二、气泡图 三、相关图 四、热力图 五、二维密度图 六、多模态二维密度图 七、雷达图 八、桑基图 九、总结 一、散点图 特点 通过点的位置展示两个连续变量之间的关系,可直观判断线性相关、非线性相关或无相关关系,点的分布密…...
