15Metasploit框架介绍
metasploit目录结构
MSF ——the metasploit framework 的简称。MSF高度模块化,即框架结构由多个module组成,是全球最受欢迎的工具
是一筐开源安全漏洞利用和测试工具,集成了各种平台上常见的溢出漏洞和流行sheellcode,并且保持更新。
metasploit涵盖了渗透测试中的全过程,你可以在这个框架下利用现有的payload进行一系列的渗透测试。
metasploit目标的结构
kali-metasploit框架目录的路径:
/opt/metasploit-framework/embedded/framework/
Tips
kali-metasploit更新:
msfconsole -v #查看版本
apt-get update
apt-get installmetasploit-framework
如果不想更新软件可以只更新插件,查找漏洞

kali-metasploit更新插件:
wget
https://github.com/rapid7/metasploit
framework/raw/edb7e20221e2088497d1f61132db3a56f81b8ce9/modules/exploits/windows/rdp/cve 2
019 0708 bluekeep rce.rb
mkdir /usr/share/metasploit-framework/modules/exploits/windows/rdp
cp cve 2019 0708 bluekeep rce.rb /usr/share/metasploit-framework/modules/exploits/windows/rdp/
data:包含metasploit用于存储某些漏洞,单词列表,图像等所需要的二进制文件的可编辑文件。
documentation:包含框架的可用文档
lib:metasploit的库文件夹
plugins:用来存放metasploit的插件
scripts:用来存放metasploit的脚本,包含meterpreter以及其他的脚本。
tools:用来存放多种的命令行实用的程序
modules:存放metasploit的模块文件
####modules目录###
auxiliary:辅助模块,辅助渗透(端口扫描、登录密码爆破、漏洞验证等)
exploits:漏洞利用模块,包含主流的漏洞利用脚本,通常是对某些可能存在漏洞的目标进行漏洞利用。命名规则:
操作系统/各种应用协议分类
payloads:攻击载荷,主要是攻击成功后在目标机器执行的代码,比如反弹shell的代码
post:后渗透阶段模块,漏洞利用成功获得meterpreter之后,向目标发送的一些功能性指令,如:提权等
encoders:编码器模块,主要包含各种编码工具,对pavload进行编码加密,以便绕过入侵检测和过滤系统
evasion:躲避模块,用来生成免杀payload
nops:由于IDS/IPS会检查数据包中不规则的数据,在某些情况下,比如针对溢出攻击,某些特殊滑行字符串
(NOPS x90x90...)则会因为被拦截而导致攻击失效。
metasploit的体系结构

01首先进入metasploit
msfdb init:初始化数据库
msfconfle:启动
db_status:查看是否成功连接到数据库
workspace:查看工作区
workspace -h :查看帮助
02内网主机发现
db_nmap:nmap扫描-PA:TCP ACK PING扫描
-PS:TCP SYN PING扫描
-PR:ARP扫描是nmap对目标进行一个arp ping扫描的过程,尤其在内网的情况下。因为防火墙不会禁止ARP请求。
hosts:当前工作区所有主机

03端口,服务,版本的探测
db_nmap:nmap 的扫描
-T[0-5]:默认为T3,T4表示最大TCP扫描延迟为10ms
-sS:TCP SYN扫描
-sA:TCP ACK扫描
-sT:TCP扫描
-A:打开操作系统探测和版本探测。
04
db_nmap:nmap扫描
--script=vuln:检查是否具有常见的漏洞
auxiliary/scanner
msf>use auxiliary/scanner/portscan/synmsf>set rhosts 192.168.123.129msf>exploit
相关文章:
15Metasploit框架介绍
metasploit目录结构 MSF ——the metasploit framework 的简称。MSF高度模块化,即框架结构由多个module组成,是全球最受欢迎的工具 是一筐开源安全漏洞利用和测试工具,集成了各种平台上常见的溢出漏洞和流行sheellcode,并且保持…...
NLP如何训练AI模型以理解知识
一、自然语言处理(NLP)的定义与核心目标 1. 什么是自然语言处理? NLP是计算机科学与人工智能的交叉领域,旨在让机器具备以下能力: • 理解:解析人类语言(文本或语音)的语法、语义和…...
【树莓派学习】树莓派3B+的安装和环境配置
【树莓派学习】树莓派3B的安装和环境配置 文章目录 【树莓派学习】树莓派3B的安装和环境配置一、搭建Raspberry Pi树莓派运行环境1、下载树莓派镜像下载器2、配置wifi及ssh3、SSH访问树莓派1)命令行登录2)远程桌面登录3)VNC登录(推…...
python连接neo4j的方式汇总
python连接neo4j的方式汇总 1.官方驱动(neo4j)特点代码示例 2. 全功能ORM(py2neo)特点代码示例 3. 领域驱动设计框架(neomodel-odm)特点代码示例 4. 异步高性能驱动(asyncneo4j)特点…...
Graph RAG 迎来记忆革命:“海马体”机制让问答更精准!
随着生成式 AI 技术的快速发展,RAG(Retrieval-Augmented Generation)和 Agent 成为企业应用大模型的最直接途径。然而,传统的 RAG 系统在准确性和动态学习能力上存在明显不足,尤其是在处理复杂上下文和关联性任务时表现不佳。近期,一篇论文提出了 HippoRAG 2,这一新型 R…...
Spring(三)容器-注入
一 自动注入Autowire 代码实现: package org.example.spring01.service;import org.springframework.stereotype.Service;Service public class UserService {}package org.example.spring01.controller;import lombok.Data; import lombok.ToString; import org.…...
剧本杀门店预约小程序:市场发展下的刚需
在剧本杀爆发式增长下,门店数字化运营的模式正在市场中逐渐展开,线下门店的竞争方向已发生了全新转变! 目前,数字化发展已经成为了消费市场的刚需,利用网络的便捷性提高服务,优化运营,提高自身…...
stable-diffusion-webui 加载模型文件
背景 stable-diffusion-webui 安装完毕后,默认的模型生成的效果图并不理想,可以根据具体需求加载指定的模型文件。国内 modelscope 下载速度较快,以该站为例进行介绍 操作步骤 找到指定的模型文件 在 https://modelscope.cn/models 中查找…...
Ubuntu20.04双系统安装及软件安装(十一):向日葵远程软件
Ubuntu20.04双系统安装及软件安装(十一):向日葵远程软件 打开向日葵远程官网,下载图形版本: 在下载目录下打开终端,执行: sudo dpkg -i SunloginClient(按tab键自动补全)出现报错: …...
华为云 | 快速搭建DeepSeek推理系统
DeepSeek(深度求索)作为一款国产AI大模型,凭借其高性能、低成本和多模态融合能力,在人工智能领域崛起,并在多个行业中展现出广泛的应用潜力。 如上所示,在华为云解决方案实践中,华为云提供的快速…...
printf 与前置++、后置++、前置--、后置-- 的关系
# 前置和前置-- 先看一段代码 大家是不是认为printf输出的是 2 3 3 2 1 1 但是实际输出的是 3 3 3 1 1 1 在这两行printf函数代码里,编译器会先计算 a 和 --a 的值,然后再 从右向左 开始输出。 printf函数中,如果有多个…...
centos7操作系统下安装docker,及查看docker进程是否启动
centos7下安装docker,需要用到的yun命令 (yum命令用于添加卸载程序) 1.设置仓库: yum-config-manager \--add-repo \http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 2.安装 Docker Engine-Community yum in…...
【向量数据库Weaviate】 和Elasticsearch的区别
Weaviate 和 Elasticsearch 是两种不同类型的数据库,设计目标和应用场景有显著差异。以下是它们的核心区别和适用场景的详细对比: 1. 设计目标与核心能力 维度WeaviateElasticsearch核心能力向量数据库 图数据库(语义搜索优先)全…...
深度学习-大白话解释循环神经网络RNN
目录 一、RNN的思想 二、RNN的基本结构 网络架构 关键点 三、RNN的前向传播 四、RNN的挑战:梯度爆炸和梯度消失 问题分析 示例推导 五、LSTM:RNN的改进 核心组件 网络架构 3. LSTM 的工作流程 4. 数学公式总结 5. LSTM 的优缺点 优点 缺点 6. LSTM 的…...
python3.13安装教程【2025】python3.13超详细图文教程(包含安装包)
文章目录 前言一、python3.13安装包下载二、Python 3.13安装步骤三、Python3.13验证 前言 本教程将为你详细介绍 Python 3.13 python3.13安装教程,帮助你顺利搭建起 Python 3.13 开发环境,快速投身于 Python 编程的精彩实践中。 一、python3.13安装包下…...
RocketMQ的运行架构
目录 1. 核心组件(1) NameServer(2) Broker(3) Producer(4) Consumer 2. 消息流转流程3. 高可用机制4. 扩展性与负载均衡5.容错机制5. 特殊功能支持6. 典型部署架构总结 RocketMQ 是一款高性能、高可靠的分布式消息中间件,其运行架构设计为分布式、可扩展、高可用的…...
SLAM文献之-DROID-SLAM: Deep Visual SLAM for Monocular, Stereo, and RGB-D Cameras
DROID-SLAM 是一种结合深度学习与传统视觉SLAM技术的先进算法,其核心目标是通过端到端可训练的深度神经网络来实现高精度的相机位姿估计和稠密三维重建。与传统SLAM方法不同,DROID-SLAM采用深度学习网络来估计深度信息,提供更高的精度与鲁棒性…...
nano 是 Linux 系统中的一个 命令行文本编辑器
nano 是 Linux 系统中的一个 命令行文本编辑器,用于在终端中直接编辑文本文件。它相比 vi 或 vim 更加简单易用,适合新手操作。 具体解释: 在你给出的命令 sudo nano /etc/nfs.conf 中: sudo:以管理员权限运行命令&a…...
JAVA毕设项目-基于SSM框架的百色学院创新实践学分认定系统源码+设计文档
文末获取源码数据库文档 感兴趣的可以先收藏,有毕设问题,项目以及论文撰写等问题都可以和博主沟通,尽最大努力帮助更多的人! 百色学院创新实践学分认定系统设计与实现 摘 要 本百色学院创新实践学分认定系统是针对目前实践学分认定…...
Unity3D 刚体动力学(Rigidbody Dynamics)详解
引言 在Unity3D中,刚体(Rigidbody)是实现物理模拟的核心组件之一。刚体动力学(Rigidbody Dynamics)是指通过物理引擎模拟物体的运动、碰撞、重力等行为。Unity3D内置了强大的物理引擎,开发者可以通过刚体组…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
定时器任务——若依源码分析
分析util包下面的工具类schedule utils: ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类,封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz,先构建任务的 JobD…...
解读《网络安全法》最新修订,把握网络安全新趋势
《网络安全法》自2017年施行以来,在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂,网络攻击、数据泄露等事件频发,现行法律已难以完全适应新的风险挑战。 2025年3月28日,国家网信办会同相关部门起草了《网络安全…...
nnUNet V2修改网络——暴力替换网络为UNet++
更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...
消防一体化安全管控平台:构建消防“一张图”和APP统一管理
在城市的某个角落,一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延,滚滚浓烟弥漫开来,周围群众的生命财产安全受到严重威胁。就在这千钧一发之际,消防救援队伍迅速行动,而豪越科技消防一体化安全管控平台构建的消防“…...
DiscuzX3.5发帖json api
参考文章:PHP实现独立Discuz站外发帖(直连操作数据库)_discuz 发帖api-CSDN博客 简单改造了一下,适配我自己的需求 有一个站点存在多个采集站,我想通过主站拿标题,采集站拿内容 使用到的sql如下 CREATE TABLE pre_forum_post_…...
人工智能 - 在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型
在Dify、Coze、n8n、FastGPT和RAGFlow之间做出技术选型。这些平台各有侧重,适用场景差异显著。下面我将从核心功能定位、典型应用场景、真实体验痛点、选型决策关键点进行拆解,并提供具体场景下的推荐方案。 一、核心功能定位速览 平台核心定位技术栈亮…...
云原生时代的系统设计:架构转型的战略支点
📝个人主页🌹:一ge科研小菜鸡-CSDN博客 🌹🌹期待您的关注 🌹🌹 一、云原生的崛起:技术趋势与现实需求的交汇 随着企业业务的互联网化、全球化、智能化持续加深,传统的 I…...
大模型智能体核心技术:CoT与ReAct深度解析
**导读:**在当今AI技术快速发展的背景下,大模型的推理能力和可解释性成为业界关注的焦点。本文深入解析了两项核心技术:CoT(思维链)和ReAct(推理与行动),这两种方法正在重新定义大模…...
rk3506上移植lvgl应用
本文档介绍如何在开发板上运行以及移植LVGL。 1. 移植准备 硬件环境:开发板及其配套屏幕 开发板镜像 主机环境:Ubuntu 22.04.5 2. LVGL启动 出厂系统默认配置了 LVGL,并且上电之后默认会启动 一个LVGL应用 。 LVGL 的启动脚本为/etc/init.d/pre_init/S00-lv_demo,…...
