当前位置: 首页 > news >正文

尚硅谷爬虫note14

一、scrapy

scrapy:为爬取网站数据是,提取结构性数据而编写的应用框架

1. 安装

        pip install scrapy

或者,国内源安装

        pip install scrapy -i https://pypi.douban.com/simple

2. 报错

        报错1)building ‘twisted.test.raiser’ extension

原因:缺少twisted库

解决:下载twisted库:

        a)cp是python版本

        b)amd是操作系统版本

        安装twisted库:

        使用:pip install 拖入twisted路径

twisted库安装完成后,再安装scrapy库

        报错2)提示python -m pip install --upgrade pid

   解决:运行python -m pip install --upgrade pid

        报错3)win32错误

  解决:pip install pypiwin32

        仍然报错)

        解决:安装Aanacoda工具

二、创建scrapy项目

1)创建scrapy项目

在终端中创建项目:

        scrapy startproject 项目名

2)创建爬虫文件

       在spiders文件夹中创建爬虫文件

a)切入spiders目录下:

        cd  项目名\项目名\spiders

 b) 在spiders文件夹中创建爬虫文件

        scrapy genspider 文件名 要爬取的网页

 一般情况下,要爬取的网页之前:不需要添加http协议

        否则start-urls中的路径不成立

  原因:start_urls的值是根据allowed_domains进行修改的,如果添加了http协议,allowed_domains的值需要用户手动修改

import scrapyclass Demo001Spider(scrapy.Spider):# 爬虫的名字:用于运行爬虫时,使用的值name = "demo001"# 允许访问的域名allowed_domains = ["www.baidu.com"]# 起始url地址:指的是第一次要访问的域名# start_urls是在allowed_domains之前添加1个http://  在allowed_domains之后添加1个/start_urls = ["http://www.baidu.com"]
#执行了 start_urls之后执行的方法    方法中的response就是返回的对象 相当于1)response = urllib.requests.urlopen()    2)response = requests.get()def parse(self, response):pass

 3)运行爬虫文件

scrapy crawl 爬虫的名字

 

做了反扒————

 解决:注释掉君子协议:项目下的setting.py文件中的robots.txt协议

注释掉:ROBOTSTXT_OBEY = True

 

 三、scrapy项目结构

项目名

        项目名

                spider文件夹        (存储爬虫文件)

                        init        

                        自定义的爬虫文件        (核心功能文件)

                init

                items        (定义数据结构的地方)(爬取的数据包含哪些)

                middleware        (中间件)(代理)

                pipelines        (管道)(处理下载的数据)

                settings        (配置文件)

四、response的属性和方法

3)4)5)常用

1)response.text

        获取响应的字符串

2)response.body

        获取响应的二进制数据

3)response.xpath

        直接使用xpath方法解析response中的内容

4)response.extract()

        提取selector对象中的data属性值

5)response.extract_first()        

        提取selector对象的第一个数据

五、scrapy工作原理

1). 引擎向spiders要url

2). 引擎将要爬取的url给调度器

3). 调度器将url生成请求对象,放入指定的队列

4). 从队列中出队一个请求

5). 引擎将请求交给下载器进行处理

6).下载器发送请求,向互联网请求数据

7). 下载器将数据返回给引擎

8). 引擎将数据再次给到spiders

9).spiders通过xpath解析数据

10).  spiders将数据,或者url,给到引擎

11). 引擎判断该数据,是数据,还是url

        a)是数据,交给管道处理

        b)还是url,交给调度器处理

六、scrapy shell

        scrapy终端

测试xpath和css表达式

免去了每次修改后,运行spiders的麻烦

        使用

                终端中直接执行:

                        scrapy shell 域名

安装ipython(高亮,补全)

        pip install ipython

七、懒加载中的src

有data-original,src用data-original替代

替换前:src = // ul[ @ id = "component_59"] / li // img / @ src
替换后:src = // ul[ @ id = "component_59"] / li // img / @ data-original

当当网练习中的第一张图片是none

        原因:没有data-original

 #有data-original,src用data-original替代src = li.xpath('.//img/@data-original').extract_first()# 第一张图片和其他图片标签不一样,第一张图片的src是可以使用的   其他图片的地址是data-originalif src:src = srcelse:#用srcsrc = li.xpath('.//img/@src').extract_first()

当当网:

        items.py:

# Define here the models for your scraped items
#
# See documentation in:
# https://docs.scrapy.org/en/latest/topics/items.html
from urllib import responseimport scrapyclass DemoDdwItem(scrapy.Item):# define the fields for your item here like:# name = scrapy.Field()# pass#图片# src = // ul[ @ id = "component_59"] / li // img / @ srcsrc = scrapy.Field()#名字# alt = // ul[ @ id = "component_59"] / li // img / @ altname = scrapy.Field()#价格# price = //ul[@id = "component_59"]/li//p[@class = "price"]/span[1]/text()price = scrapy.Field()# src、name、price都有共同的li标签# 所有的selector对象,都可以再次调用xpath方法li_list = response.xpath('//ul[@id = "component_59"]/li')for li in li_list:#.extract()提取数据#有data-original,src用data-original替代src = li.xpath('.//img/@data-original').extract_first()# 第一张图片和其他图片标签不一样,第一张图片的src是可以使用的   其他图片的地址是data-originalif src:src = srcelse:#用srcsrc = li.xpath('.//img/@src').extract_first()alt = li.xpath('.//img/@alt').extract_first()price = li1.xpath('.//p[@class = "price"]/span[1]/text()').extract_first()print(src,name,price)

相关文章:

尚硅谷爬虫note14

一、scrapy scrapy:为爬取网站数据是,提取结构性数据而编写的应用框架 1. 安装 pip install scrapy 或者,国内源安装 pip install scrapy -i https://pypi.douban.com/simple 2. 报错 报错1)building ‘twisted.te…...

1438. 绝对差不超过限制的最长连续子数组

目录 一、题目二、思路2.1 解题思路2.2 代码尝试2.3 疑难问题2.4 代码复盘 三、解法四、收获4.1 心得4.2 举一反三 一、题目 二、思路 2.1 解题思路 滑动窗口 2.2 代码尝试 class Solution { public:int longestSubarray(vector<int>& nums, int limit) {int cou…...

ZCC5090EA适用于TYPE-C接口,集成30V OVP功能, 最大1.5A充电电流,带NTC及使能功能,双节锂电升压充电芯片替代CS5090EA

概要&#xff1a; ZCC5090EA是一款5V输入&#xff0c;最大1.5A充电电流&#xff0c;支 持双 节 锂 电 池 串 联 应 用 的 升 压 充 电 管 理 I C 。ZCC5090EA集成功率MOS&#xff0c;采用异步开关架构&#xff0c; 使其在应用时仅需极少的外围器件&#xff0c;可有效减少整体 …...

Dify 开源大语言模型应用开发平台使用(二)

文章目录 说明Dify 使用报告1. 应用创建——专业的锂电池相关知识解答1.1 平台简介1.2 创建应用 2. 知识库、工作流、变量、节点与编排节点详解2.1 知识库管理2.2 工作流配置2.3 变量管理2.4 节点与编排节点 3. 测试和调试3.1 单元测试3.2 日志与监控3.3 实时调试3.4 性能测试 …...

【LangFuse】数据集与测试

1. 在线标注 2. 上传已有数据集 import json# 调整数据格式 {"input":{...},"expected_output":"label"} data [] with open(my_annotations.jsonl, r, encodingutf-8) as fp:for line in fp:example json.loads(line.strip())item {"i…...

【Python】如何解决Jupyter Notebook修改外部模块后必须重启内核的问题?

“为什么我修改了Python模块的代码&#xff0c;Jupyter Notebook却看不到变化&#xff1f;” 一、问题现象&#xff1a;令人抓狂的开发体验 假设你正在开发一个图像处理项目&#xff0c;项目结构如下&#xff1a; project/ ├── utils/ │ └── image_processor.py └…...

Redis 篇

一、数据结构 二、持久化方式 Redis 提供了两种主要的持久化方式&#xff0c;分别是 RDB&#xff08;Redis Database&#xff09;和 AOF&#xff08;Append Only File&#xff09;&#xff0c;此外&#xff0c;还可以同时使用这两种方式以增强数据安全性&#xff0c;以下为你…...

React + TypeScript 实战指南:用类型守护你的组件

TypeScript 为 React 开发带来了强大的类型安全保障&#xff0c;这里解析常见的一些TS写法&#xff1a; 一、组件基础类型 1. 函数组件定义 // 显式声明 Props 类型并标注返回值 interface WelcomeProps {name: string;age?: number; // 可选属性 }const Welcome: React.FC…...

从零开始:Linux环境下如何制作静态库与动态库

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言 动静态库是编程中两种主要的库类型&#xff0c;它们用于帮助开发者复用已有的代码&#xff0c;而不需要每次都从头开始编写。它们的主要区别在于链接和加载的时机、方式以及使用场景 库 库就是一些已经写好并且经过测试…...

【智能体Agent】ReAct智能体的实现思路和关键技术

基于ReAct&#xff08;Reasoning Acting&#xff09;框架的自主智能体 import re from typing import List, Tuplefrom langchain_community.chat_message_histories.in_memory import ChatMessageHistory from langchain_core.language_models.chat_models import BaseChatM…...

Java进阶:Zookeeper相关笔记

概要总结&#xff1a; ●Zookeeper是一个开源的分布式协调服务&#xff0c;需要下载并部署在服务器上(使用cmd启动&#xff0c;windows与linux都可用)。 ●zookeeper一般用来实现诸如数据订阅/发布、负载均衡、命名服务、集群管理、分布式锁和分布式队列等功能。 ●有多台服…...

QT-绘画事件

实现颜色的随时调整&#xff0c;追加橡皮擦功能 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QColor> #include <QPoint> #include <QVector> #include <QMouseEvent> #include <QPainter> #include <Q…...

鸿蒙NEXT开发-端云一体化开发

注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注&#xff0c;博主会一直更新鸿蒙next相关知识 目录 端云一体化开发基本概念 传统架构 端云一…...

大模型——股票分析AI工具开发教程

大模型——股票分析AI工具开发教程 在本教程中,我们将利用Google Gemini 2.0 Flash模型创建一个简单但有效的股票分析器。 你是否曾被大量的股票市场数据所淹没?希望有一个私人助理来筛选噪音并为您提供清晰、可操作的见解?好吧,你可以自己构建一个,而且由于 Python 的强…...

nexus 实现https 私有镜像搭建

1、安装nexus 1.1 安装JDK17 rpm -ivh jdk-17.0.13_linux-x64_bin.rpm 1.2 下载安装包解压到指定目录 tar zxvf nexus-3.77.2-02-unix.tar.gz -C /usr/local 2、运行nexus 默认8081端口 cd /usr/local/nexus-3.77.2-02 && bin/nexus start 3、配置nexus私有docker 镜…...

颈椎X光数据集(cervical spine X-ray dataset)

颈椎X光数据集&#xff08;cervical spine X-ray dataset&#xff09; 一.颈椎X光&#xff08;1248张原始图像&#xff0c;无处理&#xff0c;jpg格式&#xff09; 二&#xff0e;颈椎X光&#xff08;1000张原始图像&#xff0c;无处理&#xff0c;jpg格式&#xff09; 此数据…...

(动态规划 完全背包 零钱兑换)leetcode 322

本题为完全背包 与01背包的区别是 物品可以任意取 而01背包只能取一次 这就导致了状态转移方程的不同 1.当放不下:的时候 转移方程是一样的 取0到i-1 物品&#xff0c;背包容量为j的最优值 else 2.放得下:就是取 0到i-1 物品,背包容量为j的最优值和 “0到i的[j-w[i]]v…...

【AI大模型】DeepSeek + Kimi 高效制作PPT实战详解

目录 一、前言 二、传统 PPT 制作问题 2.1 传统方式制作 PPT 2.2 AI 大模型辅助制作 PPT 2.3 适用场景对比分析 2.4 最佳实践与推荐 三、DeepSeek Kimi 高效制作PPT操作实践 3.1 Kimi 简介 3.2 DeepSeek Kimi 制作PPT优势 3.2.1 DeepSeek 优势 3.2.2 Kimi 制作PPT优…...

Pytorch的一小步,昇腾芯片的一大步

Pytorch的一小步&#xff0c;昇腾芯片的一大步 相信在AI圈的人多多少少都看到了最近的信息&#xff1a;PyTorch最新2.1版本宣布支持华为昇腾芯片&#xff01; 1、 发生了什么事儿&#xff1f; 在2023年10月4日PyTorch 2.1版本的发布博客上&#xff0c;PyTorch介绍的beta版本…...

rabbitmq-amqp事务消息+消费失败重试机制+prefetch限流

1. 安装和配置 <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-amqp</artifactId> </dependency><dependency> <groupId>com.fasterxml.jackson.core</groupId> <arti…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现

目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...

现代密码学 | 椭圆曲线密码学—附py代码

Elliptic Curve Cryptography 椭圆曲线密码学&#xff08;ECC&#xff09;是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础&#xff0c;例如椭圆曲线数字签…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日&#xff0c;2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席&#xff0c;并作《智能体在安全领域的应用实践》主题演讲&#xff0c;分享了在智能体在安全领域的突破性实践。他指出&#xff0c;百度通过将安全能力…...

JVM 内存结构 详解

内存结构 运行时数据区&#xff1a; Java虚拟机在运行Java程序过程中管理的内存区域。 程序计数器&#xff1a; ​ 线程私有&#xff0c;程序控制流的指示器&#xff0c;分支、循环、跳转、异常处理、线程恢复等基础功能都依赖这个计数器完成。 ​ 每个线程都有一个程序计数…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

关于uniapp展示PDF的解决方案

在 UniApp 的 H5 环境中使用 pdf-vue3 组件可以实现完整的 PDF 预览功能。以下是详细实现步骤和注意事项&#xff1a; 一、安装依赖 安装 pdf-vue3 和 PDF.js 核心库&#xff1a; npm install pdf-vue3 pdfjs-dist二、基本使用示例 <template><view class"con…...

android RelativeLayout布局

<?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"match_parent"android:gravity&…...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

python打卡day47

昨天代码中注意力热图的部分顺移至今天 知识点回顾&#xff1a; 热力图 作业&#xff1a;对比不同卷积层热图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import D…...