当前位置: 首页 > news >正文

C++并发以及多线程的秘密

1.基础概念

并发(Concurrency)

并发是指在同一时间段内,多个任务看起来像是同时执行的。并发并不一定意味着真正的同时执行,它可以是通过时间片轮转等方式在多个任务之间快速切换,让用户感觉多个任务在同时进行。并发可以通过多线程、多进程等方式实现。

线程(Thread)

线程是进程中的一个执行单元,是 CPU 调度和分派的基本单位。一个进程可以包含多个线程,这些线程共享进程的内存空间和系统资源,但每个线程有自己独立的栈空间和执行上下文。线程之间的通信和数据共享比进程更加方便和高效。比如,在一个浏览器进程中,可能会有负责渲染页面的线程、处理网络请求的线程等。

多线程(Multithreading)

多线程是实现并发的一种方式,它允许一个进程中同时存在多个线程,这些线程可以并行(在多核 CPU 上)或并发(在单核 CPU 上)执行不同的任务,从而提高程序的执行效率和响应速度。

进程(Process)

进程是程序在操作系统中的一次执行过程,是系统进行资源分配和调度的基本单位。每个进程都有自己独立的内存空间、系统资源(如文件描述符等)和执行上下文。不同进程之间相互独立,一个进程的崩溃通常不会影响其他进程。例如,当你打开一个浏览器、一个文本编辑器时,它们分别对应着不同的进程。(一个进程有一个主线程)

2 .操作多线程

2.1 创造线程

在 C++ 中,<thread> 库提供了用于管理线程的类和函数,它是 C++11 标准引入的,用于支持多线程编程

默认构建:

std::thread t;

带执行函数的构造函数:创建一个新线程并执行指定的函数。可以传递参数给该函数

#include <iostream>
#include <thread>void func(int a) {std::cout << "线程执行,参数: " << a << std::endl;
}int main() {std::thread t(func, 42);t.join();  // 等待线程执行完毕return 0;
}

记得 线程只能出传入右值

右值引用与线程

#include <iostream>
#include <thread>
#include <string>// 线程函数,接受一个字符串参数
void threadFunction(std::string str) {std::cout << "线程接收到的字符串: " << str << std::endl;
}int main() {// 使用右值引用传递临时对象给线程std::thread t(threadFunction, std::string("Hello, Thread!"));// 等待线程执行完毕t.join();return 0;
}

左值引用与线程

左值引用用于引用一个已经存在的对象。在多线程编程中,如果需要在线程函数中修改外部对象,或者避免对象的拷贝,可以使用左值引用

#include <iostream>
#include <thread>
#include <string>// 线程函数,接受一个字符串的左值引用
void threadFunction(std::string& str) {str += " - Modified by thread";std::cout << "线程修改后的字符串: " << str << std::endl;
}int main() {std::string message = "Initial message";// 使用左值引用传递对象给线程std::thread t(threadFunction, std::ref(message));//ref提取地址// 等待线程执行完毕t.join();std::cout << "主线程看到的修改后的字符串: " << message << std::endl;return 0;
}

因为线程只能右值传递,所有以引用形式传递对象(值传递和引用之间的区别 你可以理解为复制和对地址操作)关于右值的话:c++新特性之 左右值 lambda 以及“for”-CSDN博客

成员函数

普通:

#include <iostream>
#include <thread>class MyClass {
public:// 普通成员函数void memberFunction(int value) {std::cout << "线程正在执行成员函数,传入的值是: " << value << std::endl;}
};int main() {MyClass obj;int param = 42;// 创建线程并引用类的普通成员函数std::thread t(&MyClass::memberFunction, &obj, param);// 等待线程执行完毕t.join();return 0;
}

静态:

#include <iostream>
#include <thread>class MyClass {
public:// 普通成员函数void memberFunction(int value) {std::cout << "线程正在执行成员函数,传入的值是: " << value << std::endl;}
};int main() {MyClass obj;int param = 42;// 创建线程并引用类的普通成员函数std::thread t(&MyClass::memberFunction, &obj, param);// 等待线程执行完毕t.join();return 0;
}

2.2成员函数

join函数

join() 函数的作用是阻塞当前线程,直到被调用 join() 的 std::thread 对象所代表的线程执行完毕。也就是说,当在一个线程(通常是主线程)中调用另一个线程对象的 join() 方法时,当前线程会暂停执行,等待目标线程执行结束后才会继续执行后续代码。

#include <iostream>
#include <thread>// 线程函数
void threadFunction() {for (int i = 0; i < 5; ++i) {std::cout << "子线程输出: " << i << std::endl;}
}int main() {std::thread t(threadFunction);std::cout << "主线程等待子线程执行完毕..." << std::endl;t.join();  // 主线程阻塞,等待子线程执行完毕std::cout << "子线程执行完毕,主线程继续执行。" << std::endl;return 0;
}

detch 函数

detach() 函数用于将 std::thread 对象所代表的线程与该对象分离,让线程在后台独立执行。分离后的线程在执行完毕后会自动释放资源,而不需要主线程调用 join() 来等待它结束。一旦线程被分离,就无法再通过 join() 来等待它,也不能再使用该 std::thread 对象来管理这个线程。

#include <iostream>
#include <thread>
#include <chrono>// 线程函数
void detachedThreadFunction() {std::this_thread::sleep_for(std::chrono::seconds(2));std::cout << "分离的线程执行完毕。" << std::endl;
}int main() {std::thread t(detachedThreadFunction);std::cout << "主线程不等待分离的线程,继续执行。" << std::endl;t.detach();  // 分离线程std::cout << "主线程继续执行其他任务..." << std::endl;// 主线程可以继续执行其他任务,不需要等待分离的线程return 0;
}

2.3detach陷阱

你考虑一下 上面是不是陷入陷阱?

应该是的 因为

#include <iostream>
#include <thread>
#include <chrono>// 线程函数
void detachedThreadFunction() {std::this_thread::sleep_for(std::chrono::seconds(2));//等待2s才进行std::cout << "分离的线程执行完毕。" << std::endl;
}int main() {std::thread t(detachedThreadFunction);std::cout << "主线程不等待分离的线程,继续执行。" << std::endl;t.detach();  // 分离线程std::cout << "主线程继续执行其他任务..." << std::endl;// 让主线程等待足够长的时间,确保分离的线程执行完毕std::this_thread::sleep_for(std::chrono::seconds(3)); return 0;
}

你会发现主线程已经结束了

2.4 异步执行的特性

#include <iostream>
#include <thread>
#include <chrono>
#include <vector>void threadFunction(int id) {// 模拟线程的工作负载int i=id;if (id%2==0)id=id*3;std::this_thread::sleep_for(std::chrono::seconds(id));std::cout << "Thread " << i << " finished its work." << std::endl;
}int main() {const int numThreads = 5;std::vector<std::thread> threads;// 创建多个线程for (int i = 0; i < numThreads; ++i) {threads.emplace_back(threadFunction, i + 1);}// 等待所有线程完成for (auto& thread : threads) {thread.join();}std::cout << "All threads have finished." << std::endl;return 0;
}
//就会清晰的发现 结果 
Thread 1 finished its work.
Thread 3 finished its work.
Thread 5 finished its work.
Thread 2 finished its work.
Thread 4 finished its work.

windows按工作时间来的,不是按顺序!!!

相关文章:

C++并发以及多线程的秘密

1.基础概念 并发&#xff08;Concurrency&#xff09; 并发是指在同一时间段内&#xff0c;多个任务看起来像是同时执行的。并发并不一定意味着真正的同时执行&#xff0c;它可以是通过时间片轮转等方式在多个任务之间快速切换&#xff0c;让用户感觉多个任务在同时进行。并发…...

自学微信小程序的第十二天

DAY12 1、腾讯地图SDK是一套为开发者提供多种地理位置服务的工具,可以使开发者在自己的应用中加入地图相关功能,轻松访问腾讯地图服务和数据,更好地实现微信小程序的地图功能。 表49:search()方法的常用选项 选项 类型 说明 keyword string POI搜索关键词,默认周边搜索 l…...

⭐算法OJ⭐跳跃游戏【贪心算法】(C++实现)Jump Game 系列 I,II

既股票买卖系列之后的第二组贪心算法题目&#xff1a;跳跃游戏系列。这一篇介绍的两个问题&#xff0c;其输入均为一个数组&#xff0c;每个元素表示在该位置可以跳跃的最大长度。 55. Jump Game You are given an integer array nums. You are initially positioned at the …...

带你从入门到精通——自然语言处理(五. Transformer中的自注意力机制和输入部分)

建议先阅读我之前的博客&#xff0c;掌握一定的自然语言处理前置知识后再阅读本文&#xff0c;链接如下&#xff1a; 带你从入门到精通——自然语言处理&#xff08;一. 文本的基本预处理方法和张量表示&#xff09;-CSDN博客 带你从入门到精通——自然语言处理&#xff08;二…...

ubuntu挂载固态硬盘

Ubuntu 中挂载位于 /dev/sdc1 的固态硬盘&#xff0c;可以按照以下步骤操作&#xff1a; 步骤 1&#xff1a;确认分区信息 首先&#xff0c;确保设备 /dev/sdc1 存在且已正确分区&#xff1a; sudo fdisk -l /dev/sdc # 查看分区表 lsblk # 确认分区路…...

WPF+WebView 基础

1、基于.NET8&#xff0c;通过NuGet添加Microsoft.Web.WebView2。 2、MainWindow.xaml代码如下。 <Window x:Class"Demo.MainWindow"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/win…...

国内光子AI智能引擎:OptoChat AI在南京江北新区亮相

3月3日&#xff0c;从南京市投资促进局传来振奋人心的消息&#xff0c;南京江北新区的一家高科技企业——南京南智先进光电集成技术研究院有限公司&#xff08;简称“南智光电”&#xff09;&#xff0c;携手南京知满科技等合作伙伴&#xff0c;成功研发出国内首个光子AI智能引…...

vscode离线配置远程服务器

目录 一、前提 二、方法 2.1 查看vscode的commit_id 2.2 下载linux服务器安装包 2.3 安装包上传到远程服务器&#xff0c;并进行文件解压缩 三、常见错误 Failed to set up socket for dynamic port forward to remote port&#xff08;vscode报错解决方法&#xff09;-C…...

【安装】SQL Server 2005 安装及安装包

安装包 SQLEXPR.EXE&#xff1a;SQL Server 服务SQLServer2005_SSMSEE.msi&#xff1a;数据库管理工具&#xff0c;可以创建数据库&#xff0c;执行脚本等。SQLServer2005_SSMSEE_x64.msi&#xff1a;同上。这个是 64 位操作系统。 下载地址 https://www.microsoft.com/zh-c…...

使用Maven搭建Spring Boot框架

文章目录 前言1.环境准备2.创建SpringBoot项目3.配置Maven3.1 pom.xml文件3.2 添加其他依赖 4. 编写代码4.1 启动类4.2 控制器4.3 配置文件 5.运行项目6.打包与部署6.1 打包6.2 运行JAR文件 7.总结 前言 Spring Boot 是一个用于快速构建 Spring 应用程序的框架&#xff0c;它简…...

将docker容器打包为.tar包

1. 创建打包脚本 #!/bin/bash # 设置 -e 使得脚本在遇到错误时停止执行 set -e# 必要的参数 exported_container_name"needed_export_container_name_or_id" # 需要被导出的容器的名称或id image_save_name"my_custom_image_name:v25.03.03" # 镜像需…...

SYSTEM文件夹下的文件

sys文件夹下的.c和.h文件里的函数 最重要的倒数第二个 deley文件夹下的.c和.h文件 Systick工作原理 系统滴答定时器是在内核里的 每来一个时钟信号&#xff0c;计数器减一 F1系列时钟源是HCLK&#xff08;就是AHB总线上的时钟信号&#xff09; Systick控制寄存器 Systick重装…...

GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks

GPPT: Graph Pre-training and Prompt Tuning to Generalize Graph Neural Networks KDD22 推荐指数&#xff1a;#paper/⭐⭐#​ 动机 本文探讨了图神经网络&#xff08;GNN&#xff09;在迁移学习中“预训练-微调”框架的局限性及改进方向。现有方法通过预训练&#xff08…...

【SegRNN 源码理解】PMF的多步并行预测

位置编码 elif self.dec_way "pmf":if self.channel_id:# m,d//2 -> 1,m,d//2 -> c,m,d//2# c,d//2 -> c,1,d//2 -> c,m,d//2# c,m,d -> cm,1,d -> bcm, 1, dpos_emb torch.cat([self.pos_emb.unsqueeze(0).repeat(self.enc_in, 1, 1),self.cha…...

构建自己的AI客服【根据用户输入生成EL表达式】

要实现一个基于对话形式的AI客服系统&#xff0c;该系统能够提示用户输入必要的信息&#xff0c;并根据用户的输入生成相应的EL&#xff08;Expression Language&#xff09;表达式编排规则&#xff0c;您可以按照以下步骤进行设计和开发。本文将涵盖系统架构设计、关键技术选型…...

(50)[HGAME 2023 week2]before_main

[HGAME 2023 week2]before_main nss:3501 我们进入那个sub_12EB然后我们发现这个就是base64加密 我们取得qword_4020: 0CxWsOemvJq4zdk2V6QlArj9wnHbt1NfEX/3DhyPoBRLY8pK5FciZau7UMIgTSG 很显然这个是自定义映射base64.然后我们代入我们之前写的base64自定义映射代码 enc:A…...

机器学习数学基础:39.样本和隐含和残差协方差矩阵

假设我们研究学生的数学成绩、英语成绩和学习时间之间的关系。收集了100名学生这三项数据作为样本。 样本协方差矩阵 计算得到的样本协方差矩阵如下&#xff08;假设数据简化&#xff09;&#xff1a; [ V a r ( 数学 ) C o v ( 数学 , 英语 ) C o v ( 数学 , 学习时间 ) C …...

java之http传MultipartFile文件

【需求】前端请求后端做文件上传或者excel上传&#xff0c;后端不解析直接把MultipartFile传给第三方平台&#xff0c;通过http的方式该怎么写 import org.springframework.web.multipart.MultipartFile;import java.io.*; import java.net.HttpURLConnection; import java.ne…...

深入解析SpringMVC中Http响应的实现机制

在Web应用开发中&#xff0c;处理HTTP请求并返回相应的HTTP响应是核心任务之一。SpringMVC作为Java生态中广泛使用的Web框架&#xff0c;提供了灵活且强大的机制来处理HTTP请求和生成HTTP响应。本文将深入探讨SpringMVC中如何实现HTTP响应的返回&#xff0c;涵盖从控制器方法的…...

构建一个支持精度、范围和负数的-Vue-数字输入框

分析并实现一个支持精度、范围和负数控制的数字输入框。 背景 在很多业务中&#xff0c;我们经常需要使用数字输入框&#xff0c;通常这些输入框会涉及到数字校验&#xff0c;比如限制输入范围、设置小数精度、是否允许负数等。每次写表单时&#xff0c;都需要重复定义这些校…...

智慧工地云平台源码,基于微服务架构+Java+Spring Cloud +UniApp +MySql

智慧工地管理云平台系统&#xff0c;智慧工地全套源码&#xff0c;java版智慧工地源码&#xff0c;支持PC端、大屏端、移动端。 智慧工地聚焦建筑行业的市场需求&#xff0c;提供“平台网络终端”的整体解决方案&#xff0c;提供劳务管理、视频管理、智能监测、绿色施工、安全管…...

前端倒计时误差!

提示:记录工作中遇到的需求及解决办法 文章目录 前言一、误差从何而来?二、五大解决方案1. 动态校准法(基础版)2. Web Worker 计时3. 服务器时间同步4. Performance API 高精度计时5. 页面可见性API优化三、生产环境最佳实践四、终极解决方案架构前言 前几天听说公司某个项…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility

Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

RNN避坑指南:从数学推导到LSTM/GRU工业级部署实战流程

本文较长&#xff0c;建议点赞收藏&#xff0c;以免遗失。更多AI大模型应用开发学习视频及资料&#xff0c;尽在聚客AI学院。 本文全面剖析RNN核心原理&#xff0c;深入讲解梯度消失/爆炸问题&#xff0c;并通过LSTM/GRU结构实现解决方案&#xff0c;提供时间序列预测和文本生成…...

Maven 概述、安装、配置、仓库、私服详解

目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...

稳定币的深度剖析与展望

一、引言 在当今数字化浪潮席卷全球的时代&#xff0c;加密货币作为一种新兴的金融现象&#xff0c;正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而&#xff0c;加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下&#xff0c;稳定…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

MFC 抛体运动模拟:常见问题解决与界面美化

在 MFC 中开发抛体运动模拟程序时,我们常遇到 轨迹残留、无效刷新、视觉单调、物理逻辑瑕疵 等问题。本文将针对这些痛点,详细解析原因并提供解决方案,同时兼顾界面美化,让模拟效果更专业、更高效。 问题一:历史轨迹与小球残影残留 现象 小球运动后,历史位置的 “残影”…...