当前位置: 首页 > news >正文

机器学习数学基础:39.样本和隐含和残差协方差矩阵

假设我们研究学生的数学成绩、英语成绩和学习时间之间的关系。收集了100名学生这三项数据作为样本。

样本协方差矩阵

计算得到的样本协方差矩阵如下(假设数据简化):
[ V a r ( 数学 ) C o v ( 数学 , 英语 ) C o v ( 数学 , 学习时间 ) C o v ( 英语 , 数学 ) V a r ( 英语 ) C o v ( 英语 , 学习时间 ) C o v ( 学习时间 , 数学 ) C o v ( 学习时间 , 英语 ) V a r ( 学习时间 ) ] = [ 25 10 8 10 16 6 8 6 9 ] \begin{bmatrix} Var(数学) & Cov(数学,英语) & Cov(数学,学习时间) \\ Cov(英语,数学) & Var(英语) & Cov(英语,学习时间) \\ Cov(学习时间,数学) & Cov(学习时间,英语) & Var(学习时间) \end{bmatrix} \ = \begin{bmatrix} 25 & 10 & 8 \\ 10 & 16 & 6 \\ 8 & 6 & 9 \end{bmatrix} Var(数学)Cov(英语,数学)Cov(学习时间,数学)Cov(数学,英语)Var(英语)Cov(学习时间,英语)Cov(数学,学习时间)Cov(英语,学习时间)Var(学习时间)  = 2510810166869
这里 V a r ( 数学 ) Var(数学) Var(数学)表示数学成绩的方差, C o v ( 数学 , 英语 ) Cov(数学,英语) Cov(数学,英语)表示数学成绩和英语成绩的协方差,以此类推,体现了实际样本中这三个变量之间的离散和相关关系。

隐含协方差矩阵

我们构建一个结构方程模型,假设学习时间会影响数学和英语成绩,通过模型计算得到隐含协方差矩阵:
[ 23 9 7 9 15 5 7 5 8 ] \begin{bmatrix} 23 & 9 & 7 \\ 9 & 15 & 5 \\ 7 & 5 & 8 \end{bmatrix} 23979155758
这是基于我们设定的模型,推导出来的变量之间的协方差关系。

比较拟合程度

用样本协方差矩阵减去隐含协方差矩阵,得到残差矩阵:
[ 25 − 23 10 − 9 8 − 7 10 − 9 16 − 15 6 − 5 8 − 7 6 − 5 9 − 8 ] = [ 2 1 1 1 1 1 1 1 1 ] \begin{bmatrix} 25 - 23 & 10 - 9 & 8 - 7 \\ 10 - 9 & 16 - 15 & 6 - 5 \\ 8 - 7 & 6 - 5 & 9 - 8 \end{bmatrix} \ = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} 252310987109161565876598  = 211111111
如果残差矩阵里的元素都比较小,就说明我们构建的这个模型推导出来的变量关系,和实际样本数据中的变量关系差异不大,模型拟合较好。但如果残差矩阵元素值较大,那就说明模型和实际数据不太相符,拟合程度差。

为了让你更好地理解,下面再以一个更简单的例子详细说明隐含协方差矩阵的计算过程:

假设我们有一个非常简单的结构方程模型,只包含两个观测变量 X X X Y Y Y,它们都受到一个共同的潜变量 Z Z Z的影响,且模型中路径系数分别为 a a a Z Z Z X X X的影响)和 b b b Z Z Z Y Y Y的影响),潜变量 Z Z Z的方差为 V a r ( Z ) = σ 2 Var(Z)\ =\sigma^2 Var(Z) =σ2

首先,根据结构方程模型的理论,观测变量 X X X Y Y Y的方差可以表示为:
V a r ( X ) = a 2 × V a r ( Z ) = a 2 σ 2 Var(X)\ =a^2\times Var(Z)\ =a^2\sigma^2 Var(X) =a2×Var(Z) =a2σ2
V a r ( Y ) = b 2 × V a r ( Z ) = b 2 σ 2 Var(Y)\ =b^2\times Var(Z)\ =b^2\sigma^2 Var(Y) =b2×Var(Z) =b2σ2

观测变量 X X X Y Y Y之间的协方差可以表示为:
C o v ( X , Y ) = a × b × V a r ( Z ) = a b σ 2 Cov(X,Y)\ =a\times b\times Var(Z)\ =ab\sigma^2 Cov(X,Y) =a×b×Var(Z) =abσ2

那么,这个模型的隐含协方差矩阵就是:
[ V a r ( X ) C o v ( X , Y ) C o v ( Y , X ) V a r ( Y ) ] = [ a 2 σ 2 a b σ 2 a b σ 2 b 2 σ 2 ] \begin{bmatrix} Var(X)&Cov(X,Y)\\ Cov(Y,X)&Var(Y) \end{bmatrix} \ = \begin{bmatrix} a^2\sigma^2&ab\sigma^2\\ ab\sigma^2&b^2\sigma^2 \end{bmatrix} [Var(X)Cov(Y,X)Cov(X,Y)Var(Y)] =[a2σ2abσ2abσ2b2σ2]

例如,假设 a = 0.6 a \ = 0.6 a =0.6 b = 0.5 b \ = 0.5 b =0.5 σ 2 = 4 \sigma^2 \ = 4 σ2 =4,则:
V a r ( X ) = a 2 σ 2 = 0. 6 2 × 4 = 1.44 Var(X)\ =a^2\sigma^2\ =0.6^2\times4 \ = 1.44 Var(X) =a2σ2 =0.62×4 =1.44
V a r ( Y ) = b 2 σ 2 = 0. 5 2 × 4 = 1 Var(Y)\ =b^2\sigma^2\ =0.5^2\times4 \ = 1 Var(Y) =b2σ2 =0.52×4 =1
C o v ( X , Y ) = a b σ 2 = 0.6 × 0.5 × 4 = 1.2 Cov(X,Y)\ =ab\sigma^2\ =0.6\times0.5\times4 \ = 1.2 Cov(X,Y) =abσ2 =0.6×0.5×4 =1.2

所以隐含协方差矩阵为:
[ 1.44 1.2 1.2 1 ] \begin{bmatrix} 1.44&1.2\\ 1.2&1 \end{bmatrix} [1.441.21.21]

这就是在这个简单的结构方程模型下,通过模型设定的参数计算得到隐含协方差矩阵的过程。在实际的结构方程模型中,可能会有更多的观测变量、潜变量以及更复杂的关系,但基本的计算原理是类似的。

相关文章:

机器学习数学基础:39.样本和隐含和残差协方差矩阵

假设我们研究学生的数学成绩、英语成绩和学习时间之间的关系。收集了100名学生这三项数据作为样本。 样本协方差矩阵 计算得到的样本协方差矩阵如下(假设数据简化): [ V a r ( 数学 ) C o v ( 数学 , 英语 ) C o v ( 数学 , 学习时间 ) C …...

java之http传MultipartFile文件

【需求】前端请求后端做文件上传或者excel上传,后端不解析直接把MultipartFile传给第三方平台,通过http的方式该怎么写 import org.springframework.web.multipart.MultipartFile;import java.io.*; import java.net.HttpURLConnection; import java.ne…...

深入解析SpringMVC中Http响应的实现机制

在Web应用开发中,处理HTTP请求并返回相应的HTTP响应是核心任务之一。SpringMVC作为Java生态中广泛使用的Web框架,提供了灵活且强大的机制来处理HTTP请求和生成HTTP响应。本文将深入探讨SpringMVC中如何实现HTTP响应的返回,涵盖从控制器方法的…...

构建一个支持精度、范围和负数的-Vue-数字输入框

分析并实现一个支持精度、范围和负数控制的数字输入框。 背景 在很多业务中,我们经常需要使用数字输入框,通常这些输入框会涉及到数字校验,比如限制输入范围、设置小数精度、是否允许负数等。每次写表单时,都需要重复定义这些校…...

尚硅谷爬虫note14

一、scrapy scrapy:为爬取网站数据是,提取结构性数据而编写的应用框架 1. 安装 pip install scrapy 或者,国内源安装 pip install scrapy -i https://pypi.douban.com/simple 2. 报错 报错1)building ‘twisted.te…...

1438. 绝对差不超过限制的最长连续子数组

目录 一、题目二、思路2.1 解题思路2.2 代码尝试2.3 疑难问题2.4 代码复盘 三、解法四、收获4.1 心得4.2 举一反三 一、题目 二、思路 2.1 解题思路 滑动窗口 2.2 代码尝试 class Solution { public:int longestSubarray(vector<int>& nums, int limit) {int cou…...

ZCC5090EA适用于TYPE-C接口,集成30V OVP功能, 最大1.5A充电电流,带NTC及使能功能,双节锂电升压充电芯片替代CS5090EA

概要&#xff1a; ZCC5090EA是一款5V输入&#xff0c;最大1.5A充电电流&#xff0c;支 持双 节 锂 电 池 串 联 应 用 的 升 压 充 电 管 理 I C 。ZCC5090EA集成功率MOS&#xff0c;采用异步开关架构&#xff0c; 使其在应用时仅需极少的外围器件&#xff0c;可有效减少整体 …...

Dify 开源大语言模型应用开发平台使用(二)

文章目录 说明Dify 使用报告1. 应用创建——专业的锂电池相关知识解答1.1 平台简介1.2 创建应用 2. 知识库、工作流、变量、节点与编排节点详解2.1 知识库管理2.2 工作流配置2.3 变量管理2.4 节点与编排节点 3. 测试和调试3.1 单元测试3.2 日志与监控3.3 实时调试3.4 性能测试 …...

【LangFuse】数据集与测试

1. 在线标注 2. 上传已有数据集 import json# 调整数据格式 {"input":{...},"expected_output":"label"} data [] with open(my_annotations.jsonl, r, encodingutf-8) as fp:for line in fp:example json.loads(line.strip())item {"i…...

【Python】如何解决Jupyter Notebook修改外部模块后必须重启内核的问题?

“为什么我修改了Python模块的代码&#xff0c;Jupyter Notebook却看不到变化&#xff1f;” 一、问题现象&#xff1a;令人抓狂的开发体验 假设你正在开发一个图像处理项目&#xff0c;项目结构如下&#xff1a; project/ ├── utils/ │ └── image_processor.py └…...

Redis 篇

一、数据结构 二、持久化方式 Redis 提供了两种主要的持久化方式&#xff0c;分别是 RDB&#xff08;Redis Database&#xff09;和 AOF&#xff08;Append Only File&#xff09;&#xff0c;此外&#xff0c;还可以同时使用这两种方式以增强数据安全性&#xff0c;以下为你…...

React + TypeScript 实战指南:用类型守护你的组件

TypeScript 为 React 开发带来了强大的类型安全保障&#xff0c;这里解析常见的一些TS写法&#xff1a; 一、组件基础类型 1. 函数组件定义 // 显式声明 Props 类型并标注返回值 interface WelcomeProps {name: string;age?: number; // 可选属性 }const Welcome: React.FC…...

从零开始:Linux环境下如何制作静态库与动态库

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言 动静态库是编程中两种主要的库类型&#xff0c;它们用于帮助开发者复用已有的代码&#xff0c;而不需要每次都从头开始编写。它们的主要区别在于链接和加载的时机、方式以及使用场景 库 库就是一些已经写好并且经过测试…...

【智能体Agent】ReAct智能体的实现思路和关键技术

基于ReAct&#xff08;Reasoning Acting&#xff09;框架的自主智能体 import re from typing import List, Tuplefrom langchain_community.chat_message_histories.in_memory import ChatMessageHistory from langchain_core.language_models.chat_models import BaseChatM…...

Java进阶:Zookeeper相关笔记

概要总结&#xff1a; ●Zookeeper是一个开源的分布式协调服务&#xff0c;需要下载并部署在服务器上(使用cmd启动&#xff0c;windows与linux都可用)。 ●zookeeper一般用来实现诸如数据订阅/发布、负载均衡、命名服务、集群管理、分布式锁和分布式队列等功能。 ●有多台服…...

QT-绘画事件

实现颜色的随时调整&#xff0c;追加橡皮擦功能 widget.h #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QColor> #include <QPoint> #include <QVector> #include <QMouseEvent> #include <QPainter> #include <Q…...

鸿蒙NEXT开发-端云一体化开发

注意&#xff1a;博主有个鸿蒙专栏&#xff0c;里面从上到下有关于鸿蒙next的教学文档&#xff0c;大家感兴趣可以学习下 如果大家觉得博主文章写的好的话&#xff0c;可以点下关注&#xff0c;博主会一直更新鸿蒙next相关知识 目录 端云一体化开发基本概念 传统架构 端云一…...

大模型——股票分析AI工具开发教程

大模型——股票分析AI工具开发教程 在本教程中,我们将利用Google Gemini 2.0 Flash模型创建一个简单但有效的股票分析器。 你是否曾被大量的股票市场数据所淹没?希望有一个私人助理来筛选噪音并为您提供清晰、可操作的见解?好吧,你可以自己构建一个,而且由于 Python 的强…...

nexus 实现https 私有镜像搭建

1、安装nexus 1.1 安装JDK17 rpm -ivh jdk-17.0.13_linux-x64_bin.rpm 1.2 下载安装包解压到指定目录 tar zxvf nexus-3.77.2-02-unix.tar.gz -C /usr/local 2、运行nexus 默认8081端口 cd /usr/local/nexus-3.77.2-02 && bin/nexus start 3、配置nexus私有docker 镜…...

颈椎X光数据集(cervical spine X-ray dataset)

颈椎X光数据集&#xff08;cervical spine X-ray dataset&#xff09; 一.颈椎X光&#xff08;1248张原始图像&#xff0c;无处理&#xff0c;jpg格式&#xff09; 二&#xff0e;颈椎X光&#xff08;1000张原始图像&#xff0c;无处理&#xff0c;jpg格式&#xff09; 此数据…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

深入理解JavaScript设计模式之单例模式

目录 什么是单例模式为什么需要单例模式常见应用场景包括 单例模式实现透明单例模式实现不透明单例模式用代理实现单例模式javaScript中的单例模式使用命名空间使用闭包封装私有变量 惰性单例通用的惰性单例 结语 什么是单例模式 单例模式&#xff08;Singleton Pattern&#…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【生成模型】视频生成论文调研

工作清单 上游应用方向&#xff1a;控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...

Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换

目录 关键点 技术实现1 技术实现2 摘要&#xff1a; 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式&#xff08;自动驾驶、人工驾驶、远程驾驶、主动安全&#xff09;&#xff0c;并通过实时消息推送更新车…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

c++第七天 继承与派生2

这一篇文章主要内容是 派生类构造函数与析构函数 在派生类中重写基类成员 以及多继承 第一部分&#xff1a;派生类构造函数与析构函数 当创建一个派生类对象时&#xff0c;基类成员是如何初始化的&#xff1f; 1.当派生类对象创建的时候&#xff0c;基类成员的初始化顺序 …...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中&#xff0c;我们训练出的神经网络往往非常庞大&#xff08;比如像 ResNet、YOLOv8、Vision Transformer&#xff09;&#xff0c;虽然精度很高&#xff0c;但“太重”了&#xff0c;运行起来很慢&#xff0c;占用内存大&#xff0c;不适合部署到手机、摄…...

数据结构:递归的种类(Types of Recursion)

目录 尾递归&#xff08;Tail Recursion&#xff09; 什么是 Loop&#xff08;循环&#xff09;&#xff1f; 复杂度分析 头递归&#xff08;Head Recursion&#xff09; 树形递归&#xff08;Tree Recursion&#xff09; 线性递归&#xff08;Linear Recursion&#xff09;…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...