当前位置: 首页 > news >正文

FastGPT 引申:如何基于 LLM 判断知识库的好坏

文章目录

  • 如何基于 LLM 判断知识库的好坏
    • 方法概述
    • 示例 Prompt
      • 声明抽取器 Prompt
      • 声明检查器 Prompt
    • 判断机制
    • 总结

下面介绍如何基于 LLM 判断知识库的好坏,并展示了如何利用声明抽取器和声明检查器这两个 prompt 构建评价体系。


如何基于 LLM 判断知识库的好坏

在知识库构建与维护过程中,确保信息的准确性、可验证性和一致性是至关重要的。借助大语言模型(LLM)的强大自然语言处理能力,我们可以设计一个两步走的机制——先抽取文本中的声明,再对抽取的声明进行验证。本文将介绍这一方法,并通过两个具体的 prompt 展示如何利用 LLM 来判断知识库的质量。

方法概述

主要分为两个阶段:

  1. 声明抽取
    利用 LLM 将给定文本中的信息拆解为独立、原子化的声明。每个声明需要满足以下要求:

    • 以三元组(主语,谓语,宾语)的形式呈现;
    • 声明之间互不干扰,且每个声明都是可独立验证的;
    • 不添加任何推理或解释;
    • 每行输出一个声明,同时需要挖掘问题中隐含的声明。
  2. 声明检查
    依据参考文本(即标准答案)来验证抽取的声明是否准确。验证标准包括:

    • ENTAILMENT(蕴含):声明可以从参考文本中直接推导或验证;
    • CONTRADICTION(矛盾):声明与参考文本存在矛盾;
    • NEUTRAL(中立):参考文本既不支持也不反对该声明。

这种基于声明抽取和检查的流程,可以帮助我们评估知识库中的信息是否经过严谨提取和验证,从而反映出知识库的整体质量。

示例 Prompt

下面展示两个具体的 prompt 示例,分别对应声明抽取和声明检查的任务:

声明抽取器 Prompt

你是一个专业的声明抽取器。你的任务是从给定文本中提取独立的、原子化的声明。 文本:
Hive表,多个分表怎么查请按照以下格式提取声明: 
1.每个声明应该是一个完整的三元组(主语,谓语,宾语) 
2.每个声明应该是独立的、可验证的 
3.不要添加任何推理或解释 
4.每行输出一个声明
5.提取问题中隐含的声明提取的声明:

该 prompt 要求 LLM 将输入文本拆分成若干个独立的、格式化的三元组声明,这样的处理能够帮助我们清晰地看到文本中蕴含的各个知识点。

声明检查器 Prompt

你是一个专业的声明检查器。你的任务是验证给定声明的准确性。声明(来自系统回复):
1. (用户, 想查询, Hive表)
2. (Hive表, 包含, 多个分表)参考文本(标准答案):
查询Spark创建的Hive表,多个分表怎么查请对每个声明进行验证,并按照以下标准进行判断:
- ENTAILMENT(蕴含):声明可以从参考文本中直接推导或验证
- CONTRADICTION(矛盾):声明与参考文本矛盾
- NEUTRAL(中立):参考文本既不支持也不反对该声明请按照以下格式判断声明: 
1.不要添加任何推理或解释 
2.每行输出一个声明结果判断结果:

在该 prompt 中,我们通过对比系统生成的声明与参考文本,利用 LLM 判断每个声明是否符合参考文本,从而评估声明的准确性和知识库的信息质量。

判断机制

通过上述两个 prompt,我们可以构建如下评价流程:

  1. 输入文本与声明抽取

    • 将用户或系统中的文本输入声明抽取器;
    • LLM 根据 prompt 要求,提取出格式化的三元组声明;
    • 抽取出的声明反映了知识库中的基本信息单元;
  2. 声明验证与质量评估

    • 将抽取的声明与标准答案或参考文本一起输入声明检查器;
    • LLM 根据验证标准,对每个声明进行判断,输出“ENTAILMENT”、“CONTRADICTION”或“NEUTRAL”的结果;
    • 统计验证结果,若大部分声明为“ENTAILMENT”,则说明知识库信息较为准确;反之,则可能存在错误、遗漏或模糊不清的信息;
  3. 反馈与改进

    • 根据验证结果,开发者或系统管理员可以针对性地对知识库进行调整和改进;
    • 这种基于 LLM 的自动化检查机制,有助于在大规模知识库更新过程中快速发现问题,提高信息质量;

总结

基于 LLM 的声明抽取与检查流程提供了一种创新的方法,帮助我们量化和判断知识库的质量。通过分解信息为原子化声明,并利用参考文本对声明进行严格验证,可以更高效地发现知识库中的不足,为后续改进提供明确的方向。

以上就是如何基于 LLM 判断知识库好坏的思路和具体实现示例。

相关文章:

FastGPT 引申:如何基于 LLM 判断知识库的好坏

文章目录 如何基于 LLM 判断知识库的好坏方法概述示例 Prompt声明抽取器 Prompt声明检查器 Prompt 判断机制总结 下面介绍如何基于 LLM 判断知识库的好坏,并展示了如何利用声明抽取器和声明检查器这两个 prompt 构建评价体系。 如何基于 LLM 判断知识库的好坏 在知…...

关于2023新版PyCharm的使用

考虑到大家AI编程的需要,建议大家安装新版Python解释器和新版PyCharm,下载地址都可以官网进行: Python:Download Python | Python.org(可以根据需要自行选择,建议选择3.11,保持交流版本一致&am…...

Leetcode 112: 路径总和

Leetcode 112: 路径总和 问题描述: 给定一个二叉树的根节点 root 和一个目标和 targetSum,判断是否存在从根节点到叶子节点的路径,使路径上所有节点的值相加等于目标和 targetSum。 适合面试的解法:递归 解法特点: …...

华为云IAM 用户名和IAM ID

账号 当您首次使用华为云时注册的账号,该账号是您的华为云资源归属、资源使用计费的主体,对其所拥有的资源及云服务具有完全的访问权限,可以重置用户密码、分配用户权限等。账号统一接收所有IAM用户进行资源操作时产生的费用账单。 账号不能…...

Compose Multiplatform+Kotlin Multiplatfrom 第四弹跨平台

文章目录 引言功能效果开发准备依赖使用gradle依赖库MVIFlow设计富文本显示 总结 引言 Compose Multiplatformkotlin Multiplatfrom 今天已经到compose v1.7.3,从界面UI框架上实战开发看,很多api都去掉实验性注解,表示稳定使用了!…...

【Proteus仿真】【STM32单片机】全自动养护智能生态雨林缸

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真STM32单片机控制器,使用按键、LCD1602液晶、DS18B20模块、PCF8591 ADC、浑浊传感器、PH传感器、液位传感器、继电器、水泵、酸碱调节剂、加热降温装置等。 主要功能&am…...

GBT32960 协议编解码器的设计与实现

GBT32960 协议编解码器的设计与实现 引言 在车联网领域,GBT32960 是一个重要的国家标准协议,用于新能源汽车与监控平台之间的数据交互。本文将详细介绍如何使用 Rust 实现一个高效可靠的 GBT32960 协议编解码器。 整体架构 编解码器的核心由三个主要组…...

SolidWorks 转 PDF3D 技术详解

在现代工程设计与制造流程中,不同软件间的数据交互与格式转换至关重要。将 SolidWorks 模型转换为 PDF3D 格式,能有效解决模型展示、数据共享以及跨平台协作等问题。本文将深入探讨 SolidWorks 转 PDF3D 的技术原理、操作流程及相关注意事项,…...

OpenMCU(二):GD32E23xx FreeRTOS移植

概述 本文主要描述了GD32E230移植FreeRTOS的简要步骤。移植描述过程中,忽略了Keil软件的部分使用技巧。默认读者熟练使用Keil软件。本文的描述是基于OpenMCU_FreeRTOS这个工程,该工程已经下载放好了移植GD32E230 FreeRTOS的所有文件 OpenMCU_FreeRTOS工程…...

Codeforces Round 835 (Div. 4)题解ABCDEFG

Problem - A - Codeforces 题意&#xff1a;你有 t 组数据&#xff0c;每组有两两不同的三个数 a,b,c&#xff0c;现在需要你求出他们的中位数。 思路&#xff1a;模拟即可 // Code Start Here int t;cin >> t;while(t--){vector<int> a(3);for(int i 0;i<3…...

NO1.C++语言基础|四种智能指针|内存分配情况|指针传擦和引用传参|const和static|c和c++的区别

1. 说⼀下你理解的 C 中的四种智能指针 智能指针的作用是管理指针&#xff0c;可以避免内存泄漏的发生。 智能指针就是一个类&#xff0c;当超出了类的作用域时&#xff0c;就会调用析构函数&#xff0c;这时就会自动释放资源。 所以智能指针作用的原理就是在函数结束时自动释…...

SQLite Having 子句详解

SQLite Having 子句详解 引言 SQLite 是一款轻量级的数据库管理系统,广泛应用于移动设备、嵌入式系统和各种桌面应用程序。在 SQL 查询中,HAVING 子句是用于过滤结果集的关键部分,尤其是在使用 GROUP BY 子句进行分组操作时。本文将详细解析 SQLite 中的 HAVING 子句,包括…...

Python数据分析面试题及参考答案

目录 处理 DataFrame 中多列缺失值的 5 种方法 批量替换指定列中的异常值为中位数 使用正则表达式清洗电话号码格式 合并两个存在部分重叠列的 DataFrame 将非结构化 JSON 日志转换为结构化表格 处理日期列中的多种非标准格式(如 "2023 年 12 月 / 05 日") 识…...

Spring Boot 3 整合 MinIO 实现分布式文件存储

引言 文件存储已成为一个做任何应用都不可回避的需求。传统的单机文件存储方案在面对大规模数据和高并发访问时往往力不从心&#xff0c;而分布式文件存储系统则提供了更好的解决方案。本篇文章我将基于Spring Boot 3 为大家讲解如何基于MinIO来实现分布式文件存储。 分布式存…...

ubuntu20 安装python2

1. 确保启用了 Universe 仓库 在某些情况下&#xff0c;python2-minimal 包可能位于 Universe 仓库中。你可以通过以下命令启用 Universe 仓库并更新软件包列表&#xff1a; bash复制 sudo add-apt-repository universe sudo apt update 然后尝试安装&#xff1a; bash复制…...

2025.3.3总结

周一这天&#xff0c;我约了绩效教练&#xff0c;主要想了解专业类绩效的考核方式以及想知道如何拿到一个更好的绩效。其他的岗位并不是很清楚&#xff0c;但是专业类的岗位&#xff0c;目前采取绝对考核&#xff0c;管理层和专家岗采取相对考核&#xff0c;有末尾淘汰。 通过…...

多线程-JUC源码

简介 JUC的核心是AQS&#xff0c;大部分锁都是基于AQS扩展出来的&#xff0c;这里先结合可重入锁和AQS&#xff0c;做一个讲解&#xff0c;其它的锁的实现方式也几乎类似 ReentrantLock和AQS AQS的基本结构 AQS&#xff0c;AbstractQueuedSynchronizer&#xff0c;抽象队列…...

ICLR 2025|香港浸会大学可信机器学习和推理课题组专场

点击蓝字 关注我们 AI TIME欢迎每一位AI爱好者的加入&#xff01; AITIME 01 ICLR 2025预讲会团队专场 AITIME 02 专场信息 01 Noisy Test-Time Adaptation in Vision-Language Models 讲者&#xff1a;曹晨涛&#xff0c;HKBU TMLR Group一年级博士生&#xff0c;目前关注基础…...

docker引擎备份及解决拉取失败的问题

总结一下本文&#xff0c;docker引擎不是越多越好&#xff0c;此外阿里云的容器引擎加速可适用大多数情况。 docker引擎备份 仅使用阿里云 docker引擎备份&#xff0c;唯一使用的镜像地址是我的阿里云docker镜像加速地址&#xff0c;效果好&#xff08;注意下面的阿里云镜像加…...

Django项目实战

1、安装django 查看包安装的位置 pip镜像源 镜像源名称镜像地址​清华源​https://pypi.tuna.tsinghua.edu.cn/simple​阿里云​https://mirrors.aliyun.com/pypi/simple​腾讯云​https://mirrors.cloud.tencent.com/pypi/simple​华为云​https://repo.huaweicloud.co…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(二)

HoST框架核心实现方法详解 - 论文深度解读(第二部分) 《Learning Humanoid Standing-up Control across Diverse Postures》 系列文章: 论文深度解读 + 算法与代码分析(二) 作者机构: 上海AI Lab, 上海交通大学, 香港大学, 浙江大学, 香港中文大学 论文主题: 人形机器人…...

DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径

目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解

JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用&#xff0c;结合SQLite数据库实现联系人管理功能&#xff0c;并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能&#xff0c;同时可以最小化到系统…...

Razor编程中@Html的方法使用大全

文章目录 1. 基础HTML辅助方法1.1 Html.ActionLink()1.2 Html.RouteLink()1.3 Html.Display() / Html.DisplayFor()1.4 Html.Editor() / Html.EditorFor()1.5 Html.Label() / Html.LabelFor()1.6 Html.TextBox() / Html.TextBoxFor() 2. 表单相关辅助方法2.1 Html.BeginForm() …...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...