当前位置: 首页 > news >正文

Pandas的数据转换函数

Pandas的数据转换函数:map, apply, applymap

参数描述
map只用于Series,实现每个值->值的映射
apply用于Series实现每个值的处理,用于DataFrame实现某个轴的Series的处理
applymap只能用于DataFrame, 用于处理该DataFrame的每个元素

1. map用于Series值的转换

  • 将股票代码英文转换成中文名字
  • Series.map(dict) or Series.map(function)均可
import pandas as pd
file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00print(stocks['公司'].unique())
['BIDU' 'BABA' 'IQ' 'JD']## 公司股票代码到中文的映射,注意这是小写
dict_company_names = {'bidu':'百度','baba':'阿里巴巴','iq':'爱奇艺','jd':'京东'}
## 方法1: Series.map(dict)
stocks['公司中文'] = stocks['公司'].str.lower().map(dict_company_names) 
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅  公司中文
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东## 方法2:Series.map(function), function的参数是Series的每个元素的值
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00dict_company_names = {'bidu':'百度','baba':'阿里巴巴','iq':'爱奇艺','jd':'京东'}
stocks['公司中文2'] = stocks['公司'].map(lambda x:dict_company_names[x.lower()])
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文2
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东

2. apply用于Series和DataFrame的转换

  • Series.apply(function), 函数的参数是每个值
  • DataFrame.apply(function),函数的参数是Series
import pandas as pd
import numpy as np
file_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00dict_company_names = {'bidu':'百度','baba':'阿里巴巴','iq':'爱奇艺','jd':'京东'}## Series.apply(function)stocks['公司中文3'] = stocks['公司'].apply(lambda x:dict_company_names[x.lower()] )
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文3
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东## DataFrame.apply(function)stocks['公司中文4'] = stocks.apply(lambda x:dict_company_names[x['公司'].lower()], axis=1)
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅 公司中文4
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02    百度
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01    百度
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01    百度
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02  阿里巴巴
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00  阿里巴巴
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01  阿里巴巴
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02   爱奇艺
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01   爱奇艺
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01   爱奇艺
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03    京东
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00    京东
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00    京东## 注意在这个代码中
1. apply 是在stocks这个DataFrame上调用
2. lambda x 的 x是一个Series,因为指定了axis=1,所以Series的key是列名,可以用x['公司']获取

3. applymap用于DataFrame所有值的转换

import pandas as pdfile_path = r'C:\TELCEL_MEXICO_BOT\A\互联网公司股票.xlsx'
stocks = pd.read_excel(file_path)
print(stocks)日期    公司       收盘      开盘       高       低    交易量   涨跌幅
0  2019-10-03  BIDU   104.32  102.35  104.73  101.15   2.24  0.02
1  2019-10-02  BIDU   102.62  100.85  103.24   99.50   2.69  0.01
2  2019-10-01  BIDU   102.00  102.80  103.26  101.00   1.78 -0.01
3  2019-10-03  BABA  1169.48  166.65  170.18  165.00  10.39  0.02
4  2019-10-02  BABA   165.77  162.82  166.88  161.90  11.60  0.00
5  2019-10-01  BABA   165.15  168.01  168.23  163.64  14.19 -0.01
6  2019-10-03    IQ    16.06   15.71   16.38   15.32  10.08  0.02
7  2019-10-02    IQ    15.72   15.85   15.87   15.12   8.10 -0.01
8  2019-10-01    IQ    15.92   16.14   16.22   15.50  11.65 -0.01
9  2019-10-03    JD   128.80   28.11   28.97   27.82   8.77 -0.03
10 2019-10-02    JD   128.06   28.00   28.22   27.53   9.53  0.00
11 2019-10-01    JD    28.19   28.22   28.57   27.97  10.64  0.00sub_df = stocks[['收盘', '开盘','高', '低', '交易量']]
print(sub_df)收盘      开盘       高       低    交易量
0    104.32  102.35  104.73  101.15   2.24
1    102.62  100.85  103.24   99.50   2.69
2    102.00  102.80  103.26  101.00   1.78
3   1169.48  166.65  170.18  165.00  10.39
4    165.77  162.82  166.88  161.90  11.60
5    165.15  168.01  168.23  163.64  14.19
6     16.06   15.71   16.38   15.32  10.08
7     15.72   15.85   15.87   15.12   8.10
8     15.92   16.14   16.22   15.50  11.65
9    128.80   28.11   28.97   27.82   8.77
10   128.06   28.00   28.22   27.53   9.53
11    28.19   28.22   28.57   27.97  10.64## 将这些数据取整数,应用于所有元素
print(sub_df.applymap(lambda x:int(x)))收盘   开盘    高    低  交易量
0    104  102  104  101    2
1    102  100  103   99    2
2    102  102  103  101    1
3   1169  166  170  165   10
4    165  162  166  161   11
5    165  168  168  163   14
6     16   15   16   15   10
7     15   15   15   15    8
8     15   16   16   15   11
9    128   28   28   27    8
10   128   28   28   27    9
11    28   28   28   27   10## 直接修改原df的这几列stocks.loc[:,['收盘', '开盘','高', '低', '交易量']] = sub_df.applymap(lambda x:int(x))
print(stocks)日期    公司    收盘   开盘    高    低  交易量   涨跌幅
0  2019-10-03  BIDU   104  102  104  101    2  0.02
1  2019-10-02  BIDU   102  100  103   99    2  0.01
2  2019-10-01  BIDU   102  102  103  101    1 -0.01
3  2019-10-03  BABA  1169  166  170  165   10  0.02
4  2019-10-02  BABA   165  162  166  161   11  0.00
5  2019-10-01  BABA   165  168  168  163   14 -0.01
6  2019-10-03    IQ    16   15   16   15   10  0.02
7  2019-10-02    IQ    15   15   15   15    8 -0.01
8  2019-10-01    IQ    15   16   16   15   11 -0.01
9  2019-10-03    JD   128   28   28   27    8 -0.03
10 2019-10-02    JD   128   28   28   27    9  0.00
11 2019-10-01    JD    28   28   28   27   10  0.00

相关文章:

Pandas的数据转换函数

Pandas的数据转换函数:map, apply, applymap 参数描述map只用于Series,实现每个值->值的映射apply用于Series实现每个值的处理,用于DataFrame实现某个轴的Series的处理applymap只能用于DataFrame, 用于处理该DataFrame的每个元素 1. map用于Series值…...

影刀 RPA 实战开发阶段总结

目录 1. 影刀 RPA 官方教程的重要性 1.1系统全面的知识体系 1.2 权威准确的技术指导 1.3 贴合实际的案例教学 1.4高效的学习方法引导 2. 官方视频教程与实战 2.1 官方视频教程:奠定坚实基础 2.2 实战:拓展应用视野 3. 往期实战博文导航 3.1 初级…...

Linux系统上安装kafka

目录 1. 安装Java环境 2. 下载和解压Kafka 3. 配置Kafka 4. 启动ZooKeeper和Kafka 5. 测试Kafka 6. 停止服务 7.常见问题 1. 安装Java环境 Kafka依赖Java运行环境(JDK 8或更高版本): # 安装OpenJDK(推荐) yum…...

DeepSeek如何快速开发PDF转Word软件

一、引言 如今,在线工具的普及让PDF转Word成为了一个常见需求,常见的PDF转Word工具有收费的WPS,免费的有PDFGear,以及在线工具SmallPDF、iLovePDF、24PDF等。然而,大多数免费在线转换工具存在严重隐私风险——文件需上…...

虚拟机 | Ubuntu图形化系统: open-vm-tools安装失败以及实现文件拖放

系列文章目录 虚拟机 | Ubuntu 安装流程以及界面太小问题解决 文章目录 系列文章目录虚拟机 | Ubuntu 安装流程以及界面太小问题解决 前言一、VMware Tools 和 open-vm-tools 是什么1、VMware Tools2、open-vm-tools 二、推荐使用open-vm-tools(简单)1、…...

Mysql-经典故障案例(1)-主从同步由于主键问题引发的故障

故障报错 Could not execute Write_rows event on table test.users; Duplicate entry 3 for key PRIMARY, Error_code: 1062; handler error HA_ERR_FOUND_DUPP_KEY; the events master log mysql-bin.000031, end_log_pos 3297这是由于从库存在与主库相同主键值,…...

Linux下学【MySQL】中如何实现:多表查询(配sql+实操图+案例巩固 通俗易懂版~)

每日激励:“不设限和自我肯定的心态:I can do all things。 — Stephen Curry” 绪论​: 本章是MySQL篇中,非常实用性的篇章,相信在实际工作中对于表的查询,很多时候会涉及多表的查询,在多表查询…...

ubuntu局域网部署stable-diffusion-webui记录

需要局域网访问,如下设置: 过程记录查看源码: 查看源码,原来修改参数:--server-name 故启动: ./webui.sh --server-name0.0.0.0 安装下载记录: 快速下载可设置: export HF_ENDPOI…...

最基于底层的运算符——位运算符

位运算符是直接对二进制位(bit)进行操作的运算符,它们在底层开发、算法优化和特定场景(如位掩码、数据压缩)中非常高效。以下是常见位运算符的详解、使用技巧及注意事项: 一、六大核心位运算符 1. 按位与&…...

代码随想录算法训练营第三十二天 | 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯

509. 斐波那契数 力扣题目链接(opens new window) 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n -…...

3-9 WPS JS宏单元格复制、重定位应用(拆分单表到多表)

************************************************************************************************************** 点击进入 -我要自学网-国内领先的专业视频教程学习网站 *******************************************************************************************…...

C++ 中前置 `++` 与后置 `++` 运算符重载

C 中前置 与后置 运算符重载的设计原理与使用规范 1. 为什么后置 返回对象而不是引用? 原因: 后置 需要返回自增前的旧值,但旧值在运算后已被修改。为了保存旧值,必须在函数内部创建一个临时对象(拷贝原对象的状态…...

Scala:case class(通俗易懂版)

1. case class 是什么? 想象你要做一个表格,比如学生信息表,每一行需要填:姓名、年龄、成绩。 在代码里,这种“表格的一行”就是一个数据对象,case class 就是帮你快速创建这种“表格行”的工具。 普通方…...

Vue、React、原生小程序的写法对比差异

以下是从 变量、方法、路由、状态管理、父子传值 等多个维度对 Vue、React、原生小程序 的对比表格: 技术对比表格 功能/技术Vue (Options/Composition API)React (Hooks)原生微信小程序变量定义data() { return { count: 0 } }(Options API)const count = ref(0)(Composition…...

【AIGC系列】6:HunyuanVideo视频生成模型部署和代码分析

AIGC系列博文: 【AIGC系列】1:自编码器(AutoEncoder, AE) 【AIGC系列】2:DALLE 2模型介绍(内含扩散模型介绍) 【AIGC系列】3:Stable Diffusion模型原理介绍 【AIGC系列】4&#xff1…...

java 初学知识点总结

自己总结着玩 1.基本框架 public class HelloWorld{ public static void main(String[] args){ }//类名用大写字母开头 } 2.输入: (1)Scanner:可读取各种类型,字符串相当于cin>>; Scanner anew Scanner(System.in); Scan…...

Android MVC、MVP、MVVM三种架构的介绍和使用。

写在前面:现在随便出去面试Android APP相关的工作,面试官基本上都会提问APP架构相关的问题,用Java、kotlin写APP的话,其实就三种架构MVC、MVP、MVVM,MVC和MVP高度相似,区别不大,MVVM则不同&…...

AI视频领域的DeepSeek—阿里万相2.1图生视频

让我们一同深入探索万相 2.1 ,本文不仅介绍其文生图和文生视频的使用秘籍,还将手把手教你如何利用它实现图生视频。 如下为生成的视频效果(我录制的GIF动图) 如下为输入的图片 目录 1.阿里巴巴全面开源旗下视频生成模型万相2.1模…...

IDEA 2024.1.7 Java EE 无框架配置servlet

1、创建一个目录(文件夹)lib来放置我们的库 2、将tomcat目录下的lib文件夹中的servlet-api.jar文件复制到刚创建的lib文件夹下。 3、把刚才复制到lib下的servlet-api.jar添加为库 4、在src下新建一个package:com.demo,然后创…...

STM32---FreeRTOS中断管理试验

一、实验 实验目的:学会使用FreeRTOS的中断管理 创建两个定时器,一个优先级为4,另一个优先级为6;注意:系统所管理的优先级范围 :5~15 现象:两个定时器每1s,打印一段字符串&#x…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包

文章目录 现象:mysql已经安装,但是通过rpm -q 没有找mysql相关的已安装包遇到 rpm 命令找不到已经安装的 MySQL 包时,可能是因为以下几个原因:1.MySQL 不是通过 RPM 包安装的2.RPM 数据库损坏3.使用了不同的包名或路径4.使用其他包…...

基于TurtleBot3在Gazebo地图实现机器人远程控制

1. TurtleBot3环境配置 # 下载TurtleBot3核心包 mkdir -p ~/catkin_ws/src cd ~/catkin_ws/src git clone -b noetic-devel https://github.com/ROBOTIS-GIT/turtlebot3.git git clone -b noetic https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git git clone -b noetic-dev…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...

Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)

引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划:基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标:为安全大模型创建高质量、去偏、符合伦理的训练数据集,涵盖安全相关任务(如有害内容检测、隐私保护、道德推理等)。 1.1 数据收集 描…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 ,不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源(最常用) conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

java高级——高阶函数、如何定义一个函数式接口类似stream流的filter

java高级——高阶函数、stream流 前情提要文章介绍一、函数伊始1.1 合格的函数1.2 有形的函数2. 函数对象2.1 函数对象——行为参数化2.2 函数对象——延迟执行 二、 函数编程语法1. 函数对象表现形式1.1 Lambda表达式1.2 方法引用(Math::max) 2 函数接口…...

写一个shell脚本,把局域网内,把能ping通的IP和不能ping通的IP分类,并保存到两个文本文件里

写一个shell脚本&#xff0c;把局域网内&#xff0c;把能ping通的IP和不能ping通的IP分类&#xff0c;并保存到两个文本文件里 脚本1 #!/bin/bash #定义变量 ip10.1.1 #循环去ping主机的IP for ((i1;i<10;i)) doping -c1 $ip.$i &>/dev/null[ $? -eq 0 ] &&am…...