代码随想录算法训练营第三十二天 | 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
509. 斐波那契数
力扣题目链接(opens new window)
斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。
示例 1:
- 输入:2
- 输出:1
- 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
- 输入:3
- 输出:2
- 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
- 输入:4
- 输出:3
- 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
提示:
- 0 <= n <= 30
动规五部曲:
这里我们要用一个一维dp数组来保存递归的结果
确定dp数组以及下标的含义
dp[i]的定义为:第i个数的斐波那契数值是dp[i]
确定递推公式
为什么这是一道非常简单的入门题目呢?
因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];
dp数组如何初始化
题目中把如何初始化也直接给我们了,如下:
dp[0] = 0;
dp[1] = 1;
确定遍历顺序
从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的
class Solution {public int fib(int n) {if (n <= 1) return n; int[] dp = new int[n + 1];dp[0] = 0;dp[1] = 1;for (int index = 2; index <= n; index++){dp[index] = dp[index - 1] + dp[index - 2];}return dp[n];}
}
70. 爬楼梯
力扣题目链接(opens new window)
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
- 输入: 2
- 输出: 2
- 解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
- 输入: 3
- 输出: 3
- 解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
例如 第5阶楼梯是第3楼梯+2和第四楼梯加1,所以dp[i]=dp[i-1]+dp[i-2]
那么第一层楼梯再跨两步就到第三层 ,第二层楼梯再跨一步就到第三层。
所以到第三层楼梯的状态可以由第二层楼梯 和 到第一层楼梯状态推导出来,那么就可以想到动态规划了。
746. 使用最小花费爬楼梯
给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。
你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。
请你计算并返回达到楼梯顶部的最低花费。
dp[i]的定义:到达第i台阶所花费的最少体力为dp[i]。这道题其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。所以台阶一共有cost.length+1个
可以有两个途径得到dp[i],一个是dp[i-1] 一个是dp[i-2]。
dp[i - 1] 跳到 dp[i] 需要花费 dp[i - 1] + cost[i - 1]。
dp[i - 2] 跳到 dp[i] 需要花费 dp[i - 2] + cost[i - 2]。
那么究竟是选从dp[i - 1]跳还是从dp[i - 2]跳呢?
一定是选最小的,所以dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
;
// 方式一:第一步不支付费用
class Solution {public int minCostClimbingStairs(int[] cost) {int len = cost.length;int[] dp = new int[len + 1];// 从下标为 0 或下标为 1 的台阶开始,因此支付费用为0dp[0] = 0;dp[1] = 0;// 计算到达每一层台阶的最小费用for (int i = 2; i <= len; i++) {dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[len];}
}
相关文章:

代码随想录算法训练营第三十二天 | 509. 斐波那契数 70. 爬楼梯 746. 使用最小花费爬楼梯
509. 斐波那契数 力扣题目链接(opens new window) 斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n -…...
3-9 WPS JS宏单元格复制、重定位应用(拆分单表到多表)
************************************************************************************************************** 点击进入 -我要自学网-国内领先的专业视频教程学习网站 *******************************************************************************************…...
C++ 中前置 `++` 与后置 `++` 运算符重载
C 中前置 与后置 运算符重载的设计原理与使用规范 1. 为什么后置 返回对象而不是引用? 原因: 后置 需要返回自增前的旧值,但旧值在运算后已被修改。为了保存旧值,必须在函数内部创建一个临时对象(拷贝原对象的状态…...
Scala:case class(通俗易懂版)
1. case class 是什么? 想象你要做一个表格,比如学生信息表,每一行需要填:姓名、年龄、成绩。 在代码里,这种“表格的一行”就是一个数据对象,case class 就是帮你快速创建这种“表格行”的工具。 普通方…...
Vue、React、原生小程序的写法对比差异
以下是从 变量、方法、路由、状态管理、父子传值 等多个维度对 Vue、React、原生小程序 的对比表格: 技术对比表格 功能/技术Vue (Options/Composition API)React (Hooks)原生微信小程序变量定义data() { return { count: 0 } }(Options API)const count = ref(0)(Composition…...

【AIGC系列】6:HunyuanVideo视频生成模型部署和代码分析
AIGC系列博文: 【AIGC系列】1:自编码器(AutoEncoder, AE) 【AIGC系列】2:DALLE 2模型介绍(内含扩散模型介绍) 【AIGC系列】3:Stable Diffusion模型原理介绍 【AIGC系列】4࿱…...
java 初学知识点总结
自己总结着玩 1.基本框架 public class HelloWorld{ public static void main(String[] args){ }//类名用大写字母开头 } 2.输入: (1)Scanner:可读取各种类型,字符串相当于cin>>; Scanner anew Scanner(System.in); Scan…...

Android MVC、MVP、MVVM三种架构的介绍和使用。
写在前面:现在随便出去面试Android APP相关的工作,面试官基本上都会提问APP架构相关的问题,用Java、kotlin写APP的话,其实就三种架构MVC、MVP、MVVM,MVC和MVP高度相似,区别不大,MVVM则不同&…...

AI视频领域的DeepSeek—阿里万相2.1图生视频
让我们一同深入探索万相 2.1 ,本文不仅介绍其文生图和文生视频的使用秘籍,还将手把手教你如何利用它实现图生视频。 如下为生成的视频效果(我录制的GIF动图) 如下为输入的图片 目录 1.阿里巴巴全面开源旗下视频生成模型万相2.1模…...

IDEA 2024.1.7 Java EE 无框架配置servlet
1、创建一个目录(文件夹)lib来放置我们的库 2、将tomcat目录下的lib文件夹中的servlet-api.jar文件复制到刚创建的lib文件夹下。 3、把刚才复制到lib下的servlet-api.jar添加为库 4、在src下新建一个package:com.demo,然后创…...

STM32---FreeRTOS中断管理试验
一、实验 实验目的:学会使用FreeRTOS的中断管理 创建两个定时器,一个优先级为4,另一个优先级为6;注意:系统所管理的优先级范围 :5~15 现象:两个定时器每1s,打印一段字符串&#x…...

深色系B端系统界面,在何种场景下更加适合?
在数字化办公日益普及的当下,B 端系统已成为企业运营管理不可或缺的工具。B 端系统界面设计的优劣,直接影响着用户体验和工作效率。界面不仅仅是人与系统交互的媒介,更是企业业务流程的可视化呈现。随着设计理念和技术的不断发展,…...
如何使用 Python+Flask+win32print 实现简易网络打印服务1
Python 实现网络打印机:Flask win32print 在工作场景中,我们可能需要一个简单的网页接口,供他人上传文档并自动打印到指定打印机。 本文将演示如何使用 Python Flask win32print 库来实现这一需求。 代码详见:https://github.…...

深度学习DNN实战
导包: import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline import numpy as np import sklearn import pandas as pd import os import sys import time from tqdm.auto import tqdm import torch import torch.nn as nn import torch…...

课程3. 分批训练与数据规范、标准化
课程3. 分批训练与数据规范、标准化 理论神经网络的梯度优化反向传播算法 批量训练网络输入的规范化BatchNorm 验证样本实践加载数据集网络构建训练神经网络 课程计划: 1.理论: 批量训练; 输入数据的规范化; 批量标准化ÿ…...
《机器学习数学基础》补充资料:过渡矩阵和坐标变换推导
尽管《机器学习数学基础》这本书,耗费了比较长的时间和精力,怎奈学识有限,错误难免。因此,除了在专门的网页( 勘误和修订 )中发布勘误和修订内容之外,对于重大错误,我还会以专题的形…...
linux指令学习--sudo apt-get install vim
1. 命令分解 部分含义sudo以管理员权限运行命令(需要输入用户密码)。apt-getUbuntu 的包管理工具,用于安装、更新、卸载软件包。installapt-get 的子命令,表示安装软件包。vim要安装的软件包名称(Vim 文本编辑器&…...

类和对象—多态—案例2—制作饮品
案例描述: 制作饮品的大致流程为:煮水-冲泡-倒入杯中-加入辅料 利用多态技术实现本案例,提供抽象制作产品基类,提供子类制作咖啡和茶叶 思路解析: 1. 定义抽象基类 - 创建 AbstractDrinking 抽象类,该类…...

嵌入式产品级-超小尺寸游戏机(从0到1 硬件-软件-外壳)
Ultra-small size gaming console。 超小尺寸游戏机-Pico This embedded product is mainly based on miniaturization, followed by his game functions are also very complete, for all kinds of games can be played, and there will be relevant illustrations in the fo…...

计算机毕业设计Python+Django+Vue3微博数据舆情分析平台 微博用户画像系统 微博舆情可视化(源码+ 文档+PPT+讲解)
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片! 作者简介:Java领…...
Python爬虫实战:研究feedparser库相关技术
1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的信息资源。RSS(Really Simple Syndication)作为一种标准化的信息聚合技术,被广泛用于网站内容的发布和订阅。通过 RSS,用户可以方便地获取网站更新的内容,而无需频繁访问各个网站。 然而,互联网…...

C++:多态机制详解
目录 一. 多态的概念 1.静态多态(编译时多态) 二.动态多态的定义及实现 1.多态的构成条件 2.虚函数 3.虚函数的重写/覆盖 4.虚函数重写的一些其他问题 1).协变 2).析构函数的重写 5.override 和 final关键字 1&#…...

脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...

Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...

DBLP数据库是什么?
DBLP(Digital Bibliography & Library Project)Computer Science Bibliography是全球著名的计算机科学出版物的开放书目数据库。DBLP所收录的期刊和会议论文质量较高,数据库文献更新速度很快,很好地反映了国际计算机科学学术研…...

软件工程 期末复习
瀑布模型:计划 螺旋模型:风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合:模块内部功能紧密 模块之间依赖程度小 高内聚:指的是一个模块内部的功能应该紧密相关。换句话说,一个模块应当只实现单一的功能…...

基于stm32F10x 系列微控制器的智能电子琴(附完整项目源码、详细接线及讲解视频)
注:文章末尾网盘链接中自取成品使用演示视频、项目源码、项目文档 所用硬件:STM32F103C8T6、无源蜂鸣器、44矩阵键盘、flash存储模块、OLED显示屏、RGB三色灯、面包板、杜邦线、usb转ttl串口 stm32f103c8t6 面包板 …...

CSS 工具对比:UnoCSS vs Tailwind CSS,谁是你的菜?
在现代前端开发中,Utility-First (功能优先) CSS 框架已经成为主流。其中,Tailwind CSS 无疑是市场的领导者和标杆。然而,一个名为 UnoCSS 的新星正以其惊人的性能和极致的灵活性迅速崛起。 这篇文章将深入探讨这两款工具的核心理念、技术差…...
用js实现常见排序算法
以下是几种常见排序算法的 JS实现,包括选择排序、冒泡排序、插入排序、快速排序和归并排序,以及每种算法的特点和复杂度分析 1. 选择排序(Selection Sort) 核心思想:每次从未排序部分选择最小元素,与未排…...

Spring是如何实现无代理对象的循环依赖
无代理对象的循环依赖 什么是循环依赖解决方案实现方式测试验证 引入代理对象的影响创建代理对象问题分析 源码见:mini-spring 什么是循环依赖 循环依赖是指在对象创建过程中,两个或多个对象相互依赖,导致创建过程陷入死循环。以下通过一个简…...