【Azure 架构师学习笔记】- Azure Databricks (15) --Delta Lake 和Data Lake
本文属于【Azure 架构师学习笔记】系列。
本文属于【Azure Databricks】系列。
接上文 【Azure 架构师学习笔记】- Azure Databricks (14) – 搭建Medallion Architecture part 2
前言
ADB 除了UC 这个概念之外,前面【Azure 架构师学习笔记】- Azure Databricks (12) – Medallion Architecture简介中也提到了lakehouse, 那么现在再深入一下了解ADB 的lakehouse。同时看看Data Lake和Delta Lake之间的区别与联系。
Data Lake是一个中央存储库,存储和处理原始数据。
Delta Lake则是一个开源的,针对数据存储的“表结构”。对比起Data Lake, 它通过支持ACID,架构演变,数据版本控制等多个特性来提升数据存储中的各种能力。
Data Lake 是一个通用术语,描述了数据存储方法。
Delta Lake 是一种特定的开源技术。数据使用delta lake技术存储在delta 表中。使数据更加安全和高性能。这种技术通常就跟lakehouse架构相关联。
在Delta lake中,如果你的data lake包含了非表格数据, 那么还要把它们存进表中。
Data lake
数据湖是把数据环境类比成一个湖(中央存储),有多条河流(数据流)流入到湖中。这些数据流最终都流到同一个地方,无需严格的预定义结构。它的出现主要是应对数据仓库这种需要预定义架构的存储模式。数据仓库对特定的查询进行了性能优化,意味着以牺牲灵活性为代价提高速度。另外由于不同的供应商有专用数据存储格式,意味着你可能会被供应商“绑架”。
相比数据仓库, 数据湖针对灵活性进行优化,对数据存储没有格式要求,同时也支持不需要复杂昂贵的预处理的数据分析。

数据沼泽
数据湖提供了灵活度和相对低廉的存储价格,各方异构数据都可以简单直接地存储到单一位置。但是当数据不停增长,这样的灵活就可能带来问题,比如文件的版本跟踪,数据架构,数据恢复等。
这种情况将会使得数据湖,退化成数据沼泽。导致下游应用的“数据源”变得不准确或者需要花费大量成本进行清洗才能使用。
Delta Lake
Delta lake 可以运行在已有的data lake 基础架构之上。它把数据以parquet文件格式存储在后台。
从磁盘上看Delta Lake的文件存储将会试一下结构,有文件夹,包含了事务日志,数据的变更记录,delta 表的分区。
your_delta_table/ <-- this is the top-level table directory
_delta_log <-- this is the transaction log which tracks00.json all the changes to your data01.json…n.json
file1.parquet <-- these are your Delta table partitions,
file2.parquet ordered for maximum query performance
…
fileN.parquet
Delta Lake 相对于 Data Lake的优势
- ACID: 跟数据库的ACID 类似, 想象一下当你使用集群向Data Lake写入数据,如果此时集群中途崩溃了,数据文件会以损坏或者只有部分存储到datalake上。你需要手动识别并清理这些残缺文件然后重跑。但是对于Delta lake, 则会把整个写操作回退,而不写入到存储上。
- 性能:Parquet格式文件,在很多大数据应用上都远比其他类型的格式快得多,因为其具有一些如压缩,列存储等特点。同时Delta Lake对其进行了一些改进,使其更加适合lakehouse。
- 文件搜索:在data lake中读取数据需要先列出所有的文件,非常耗时,特别是云环境这种使用Key-value 存储的文件系统。KV 存储在范围扫描过程中速度远不如其他系统,它更适合精确查找。Delta Lake 则通过预先把路径存储到Parquet的事务日志中,减少全量扫描的开销从而加快文件搜索。
- 元数据:在Data Lake的parquet 文件存储每个文件关于列的元数据, 这些元数据包含每个行组内列的最大,最小值,每一次查询范围数据都不得不遍历所有文件。在Delta Lake中,对parquet进行了改进把这些元数据独立存储在单个事务日志文件中,减少扫描的范围和数量。
- 架构演变:由于输入的数据总是在变,你不能总是知道最后数据集的架构,或某种原因你需要增减列。在Delta lake中通过write.option(“mergeSchema”,“true”)的方式来实现即可。
除此之外,还有包括版本控制等优点,就不一一列举。
小结
下一文将介绍一下DataBricks在Delta方面的知识。
相关文章:
【Azure 架构师学习笔记】- Azure Databricks (15) --Delta Lake 和Data Lake
本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (14) – 搭建Medallion Architecture part 2 前言 ADB 除了UC 这个概念之外,前面【Azure 架构师学习笔记】- Azure Databricks (1…...
WPF高级 | WPF 应用程序部署与发布:确保顺利交付到用户手中
WPF高级 | WPF 应用程序部署与发布:确保顺利交付到用户手中 一、前言二、部署与发布基础概念2.1 部署的定义与目的2.2 发布的方式与渠道2.3 部署与发布的关键要素 三、WPF 应用程序打包3.1 使用 Visual Studio 自带的打包工具3.2 使用第三方打包工具 四、发布到不同…...
在 IntelliJ IDEA(2024) 中创建 JAR 包步骤
下是在 IntelliJ IDEA 中创建 JAR 包的详细的步骤: 1. 选择File -> Project Structure->Artifacts, (1)点击➕新建,如下图所示: (2)选择JAR->Empty (3)输入jar包名称,确定输出路径 (4&#…...
【C++】5.4.3 范围for语句
范围for语句基本形式: for(声明变量:序列容器) {循环执行语句; } 其中,“序列容器”是指花括号括起来的初始值列表、数组、vector或者string等类型的对象,主要特点是拥有能返回迭代器的 begin() 和 end() 成员; “声明变量”是一个类似声明…...
达梦数据库备份
达梦数据库联机在线备份操作指南 一、基础条件与准备 开启归档模式: 联机备份必须处于归档模式下,否则无法执行。需通过disql工具执行以下操作: alter database mount; alter database ARCHIVELOG; 例子: [dmdbaserver ~]$ cd /op…...
Linux系统基于ARM平台的LVGL移植
软硬件介绍:Ubuntu 20.04 ARM 和(Cortex-A53架构)开发板 基本原理 LVGL图形库是支持使用Linux系统的Framebuffer帧缓冲设备实现的,如果想要实现在ARM开发板上运行LVGL图形库,那么就需要把LVGL图形库提供的关于帧缓冲设…...
C++ 二叉搜索树代码
C 二叉搜索树代码 #include <iostream> using namespace std;template<typename T> struct TreeNode{T val;TreeNode *left;TreeNode *right;TreeNode():val(0), left(NULL), right(NULL){}TreeNode(T x):val(x), left(NULL), right(NULL){} };template<typena…...
DeepSeek+知识库+鸿蒙,助力鸿蒙高效开发
不知道你们发现没有,就是鸿蒙开发官网,文档也太多太多了,对于新手来说确实头疼,开发者大多是极客,程序的目的是让世界更高效!看文档,挺头疼的,毕竟都是理科生。 遇到问题不要慌&…...
蓝桥杯牛客1-10重点(自用)
1 import mathdef lcm(a,b):return a * b // math.gcd(a, b) # math.gcd(a, b)最小公倍数 a,b map(int,input().split()) # a int(input()) # 只读取一个整数 # print(a) print(lcm(a,b)) 2 import os import sysdef fly(lists,n):count 0flag Falsefor i in range(1,n…...
Kafka - 高吞吐量的七项核心设计解析
文章目录 概述一、顺序磁盘I/O (分区顺序追加)1.1 存储架构设计1.2 性能对比实验1.3 存储优化策略 二、零拷贝技术:颠覆传统的数据传输革命2.1 传统模式痛点2.2 Kafka优化方案 三、页缓存机制:操作系统的隐藏加速器3.1 实现原理3.2 优势对比 四、日志索引…...
Towards Precise and Explainable Hardware Trojan Localization at LUT Level
文章 《Towards Precise and Explainable Hardware Trojan Localization at LUT Level》 TCAD’2025 《LUT层次的精细可解释木马定位》 期刊介绍 《IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems》(TCAD)是集成电路…...
Python实现鼠标点击获取窗口进程信息
最近遇到挺无解的一个问题:电脑上莫名其妙出现一个白色小方块,点击没有反应,关也关不掉,想知道它和哪个软件有关还是显卡出了问题,也找不到思路,就想着要不获取一下它的进程号看看。 于是写了一个Python脚本…...
Mac安装jdk教程
在Mac上安装JDK(Java Development Kit)的步骤如下: 一、下载JDK安装包 访问Oracle官网: 打开浏览器,访问Oracle JDK下载页面。 选择JDK版本: 根据你的开发需求选择合适的JDK版本。例如,JDK 11…...
【HeadFirst系列之HeadFirst设计模式】第14天之与设计模式相处:真实世界中的设计模式
与设计模式相处:真实世界中的设计模式 设计模式是软件开发中的经典解决方案,它们帮助我们解决常见的设计问题,并提高代码的可维护性和可扩展性。在《Head First设计模式》一书中,作者通过生动的案例和通俗的语言,深入…...
JDBC 完全指南:掌握 Java 数据库交互的核心技术
JDBC 完全指南:掌握 Java 数据库交互的核心技术 一、JDBC 是什么?为什么它如此重要? JDBC(Java Database Connectivity)是 Java 语言中用于连接和操作关系型数据库的标准 API。它允许开发者通过统一的接口访问不同的数…...
Vue父子组件传递笔记
Vue父子组件传递笔记 props 父组件向子组件进行传值 (1)在父组件APP.vue <template><div> <!-- 给子组件Child.vue传递以msg的信号,传递的信息内容为messages --><Child :msg"messages"></Child>…...
文件上传漏洞与phpcms漏洞安全分析
目录 1. 文件上传漏洞简介 2. 文件上传漏洞的危害 3. 文件上传漏洞的触发条件 1. 文件必须能被服务器解析执行 2. 上传目录必须支持代码执行 3. 需要能访问上传的文件 4. 例外情况:非脚本文件也可能被执行 4. 常见的攻击手法 4.1 直接上传恶意文件 4.2 文件…...
【deepseek】辅助思考生物学问题:ICImapping构建遗传图谱gap较大
基于ICImapping构建遗传图谱的常见问题与解答 问题一:染色体两端标记间遗传距离gap较大 答疑一 标记密度不足(如芯片设计时分布不均)重组概率低基因组结构变异软件算法限制 Deepseek的解释 #### 1. **染色体末端的重组率较低** - **现象*…...
linux磁盘非lvm分区
linux磁盘非lvm分区 类似于windows划分C盘、D盘,并且不需要多个磁盘空间合一 图形化直接分区 通过gparted 这个提供直观的图形化分区,类似windows的磁盘管理工具 下载方式: 乌班图/debian系列: sudo apt install gparted红帽…...
Windows下sql server2012安装流程
准备工作 确认系统要求:确保 Windows 系统为 Windows 7 或更高版本,且为 64 位操作系统,CPU 在 2GHz 以上,内存 4GB 或更高。 下载安装包:从微软官方网站或其他可靠渠道下载 SQL Server 2012 安装包。 关闭相关软件&am…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
脑机新手指南(七):OpenBCI_GUI:从环境搭建到数据可视化(上)
一、OpenBCI_GUI 项目概述 (一)项目背景与目标 OpenBCI 是一个开源的脑电信号采集硬件平台,其配套的 OpenBCI_GUI 则是专为该硬件设计的图形化界面工具。对于研究人员、开发者和学生而言,首次接触 OpenBCI 设备时,往…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
第八部分:阶段项目 6:构建 React 前端应用
现在,是时候将你学到的 React 基础知识付诸实践,构建一个简单的前端应用来模拟与后端 API 的交互了。在这个阶段,你可以先使用模拟数据,或者如果你的后端 API(阶段项目 5)已经搭建好,可以直接连…...
