当前位置: 首页 > news >正文

FastGPT 引申:混合检索完整实例

文章目录

    • FastGPT 引申:混合检索完整实例
      • 1. 各检索方式的初始结果
      • 2. RRF合并过程
      • 3. 合并后的结果
      • 4. Rerank重排序后
      • 5. 最终RRF合并
      • 6. 内容总结

FastGPT 引申:混合检索完整实例

下边通过一个简单的例子说明不同检索方式的分值变化过程,假设我们有一个查询:“如何使用Python进行数据分析”

1. 各检索方式的初始结果

向量检索结果 (相似度分数0-1):

1. {id: "doc1",q: "Python数据分析基础教程",score: 0.85,type: "embedding"
}
2. {id: "doc2",q: "数据分析工具pandas使用",score: 0.78,type: "embedding"
}

全文检索结果 (BM25分数):

1. {id: "doc2",q: "数据分析工具pandas使用",score: 8.5,type: "fullText"
}
2. {id: "doc3",q: "Python编程基础",score: 6.2,type: "fullText"
}

2. RRF合并过程

使用公式: score = 1/(k + rank),这里 k=60

向量检索RRF分数:

doc1: 1/(60 + 1) = 0.0164
doc2: 1/(60 + 2) = 0.0161

全文检索RRF分数:

doc2: 1/(60 + 1) = 0.0164
doc3: 1/(60 + 2) = 0.0161

3. 合并后的结果

1. {id: "doc2",  // 出现在两个结果中q: "数据分析工具pandas使用",score: [{type: "embedding", value: 0.78},{type: "fullText", value: 8.5},{type: "rrf", value: 0.0325}  // 0.0161 + 0.0164]
}2. {id: "doc1",q: "Python数据分析基础教程",score: [{type: "embedding", value: 0.85},{type: "rrf", value: 0.0164}]
}3. {id: "doc3",q: "Python编程基础",score: [{type: "fullText", value: 6.2},{type: "rrf", value: 0.0161}]
}

4. Rerank重排序后

假设重排序模型对这些文档评分:

1. {id: "doc2",q: "数据分析工具pandas使用",score: [{type: "embedding", value: 0.78},{type: "fullText", value: 8.5},{type: "rrf", value: 0.0325},{type: "rerank", value: 0.92}]
}2. {id: "doc1",q: "Python数据分析基础教程",score: [{type: "embedding", value: 0.85},{type: "rrf", value: 0.0164},{type: "rerank", value: 0.88}]
}3. {id: "doc3",q: "Python编程基础",score: [{type: "fullText", value: 6.2},{type: "rrf", value: 0.0161},{type: "rerank", value: 0.75}]
}

5. 最终RRF合并

将重排序结果作为第三个来源(k=58)进行最终 RRF 合并:

doc2: 0.0325 + 1/(58 + 1) = 0.0325 + 0.0169 = 0.0494
doc1: 0.0164 + 1/(58 + 2) = 0.0164 + 0.0167 = 0.0331
doc3: 0.0161 + 1/(58 + 3) = 0.0161 + 0.0164 = 0.0325

6. 内容总结

展示如下环节:

  1. 不同检索方式的分数范围不同
  2. RRF 如何将不同分数统一到相同尺度
  3. 多次出现的文档如何累加 RRF 分数
  4. 重排序如何提供额外的相关性评分

文档排序综合考虑:

  • 语义相似度(向量检索)
  • 关键词匹配(全文检索)
  • 语义理解(重排序)
  • 在不同搜索结果中的排名位置(RRF)

相关文章:

FastGPT 引申:混合检索完整实例

文章目录 FastGPT 引申:混合检索完整实例1. 各检索方式的初始结果2. RRF合并过程3. 合并后的结果4. Rerank重排序后5. 最终RRF合并6. 内容总结 FastGPT 引申:混合检索完整实例 下边通过一个简单的例子说明不同检索方式的分值变化过程,假设我…...

Socket.IO聊天室

项目代码 https://github.com/R-K05/Socket.IO- 创建项目 服务端项目和客户端项目 安装Socket依赖 服务端 npm i socket.io 客户端 npm i socket.io-client 客户端添加聊天页面 源码 服务端 app.js const express require("express") const app express()co…...

MySQL表中数据基本操作

1.表中数据的插入: 1.insert insert [into] table_name [(column [,column]...)] values (value_list) [,(value_list)] ... 创建一张学生表: 1.1单行指定列插入: insert into student (name,qq) values (‘张三’,’1234455’); values左…...

可狱可囚的爬虫系列课程 16:爬虫重试机制

一、retrying模块简介 在爬虫中,因为我们是在线爬取内容,所以可能会因为网络、服务器等原因导致报错,那么这类错误出现以后,我们想要做的肯定是在报错处进行重试操作,Python提供了一个很好的模块,能够直接帮…...

第十五届蓝桥杯----B组cpp----真题解析(小白版本)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 必看前言!!!!!一、试题A:握手问题1.题意分析2.代码解答 二、试题B:小球反弹1.题意…...

软考架构师笔记-数据库系统

1.7 数据库系统 三级模式-两级映射 三级模式 外模式:用户视图概念模式:只涉及描述内模式:存储方式的描述 两级映射 外模式-概念模式映射概念模式-内模式映射 数据库的设计 步骤 需求分析 输出为需求分析、数据流图(Data FLow Diagram-DF…...

Spring AI 1.0.0-M6 快速开始(一)

Spring AI 1.0.0-M6 入门一、存储库二、依赖管理完整maven 入门 Spring 是JAVA中我们经常使用的框架之一,Spring AI不断的发展迭代目前已经到M6版本据说上半年会出一个稳定版本。 本节提供了如何开始使用Spring AI的M6。 一、存储库 1.0 M6 -添加Spring存储库 需…...

go 分布式redis锁的实现方式

go 语言以高并发著称。那么在实际的项目中 经常会用到锁的情况。比如说秒杀抢购等等场景。下面主要介绍 redis 布式锁实现的两种高并发抢购场景。其实 高并发 和 分布式锁 是一个互斥的两个状态: 方式一 setNX: 使用 redis自带的API setNX 来实现。能解决…...

Unity中Stack<T>用法以及删除Stack<GameObject>的方法

Unity中Stack用法以及删除Stack的方法 介绍Stack<T>的APIStack<T> 常用方法创建和初始化 Stack<T>Push 和 Pop 操作Stack<T>遍历清空栈检查栈是否包含某个元素 栈的典型应用场景撤销操作深度优先搜索&#xff08;DFS&#xff09;注意事项 总结 介绍 因…...

Vue进阶之Vue3源码解析(二)

Vue3源码解析 运行runtime-coresrc/createApp.tssrc/vnode.ts.tssrc/renderer.ts runtime-domsrc/index.ts 总结 运行 runtime-core src/createApp.ts vue的创建入口 import { createVNode } from "./vnode";export function createAppAPI(render) {return funct…...

linux的文件系统及文件类型

目录 一、Linux支持的文件系统 二、linux的文件类型 2.1、普通文件 2.2、目录文件 2.3、链接文件 2.4、字符设备文件: 2.5、块设备文件 2.6、套接字文件 2.7、管道文件 三、linux的文件属性 3.1、关于权限部分 四、Linux的文件结构 五、用户主目录 5.1、工作目录…...

如何下载安装 PyCharm?

李升伟 整理 一、下载 PyCharm 访问官网 打开 PyCharm 官网&#xff0c;点击 "Download" 按钮25。 版本选择&#xff1a; 社区版&#xff08;Community&#xff09;&#xff1a;免费使用&#xff0c;适合个人学习和基础开发。 专业版&#xff08;Professional&#…...

3D空间曲线批量散点化软件V1.0正式发布,将空间线条导出坐标点,SolidWorks/UG/Catia等三维软件通用

软件下载地址&#xff1a; SolidWorks/UG/Catia等三维软件通用&#xff0c;3D空间曲线批量散点化软件V1.0正式发布&#xff0c;将空间线条导出坐标点 - 陶小桃Blog在三维设计领域&#xff0c;工程师常需将复杂空间曲线转化为离散坐标点以用于逆向工程、有限元分析、数控加工或…...

WPS AI+office-ai的安装、使用

** 说明&#xff1a;WPS AI和OfficeAI是两个独立的AI助手&#xff0c;下面分别简单讲下如何使用 ** WPS AI WPS AI是WPS自带AI工具 打开新版WPS&#xff0c;新建文档后就可以看到菜单栏多了一个“WPS AI”菜单&#xff0c;点击该菜单&#xff0c;发现下方出现很多菜单&#xf…...

java后端开发day27--常用API(二)正则表达式爬虫

&#xff08;以下内容全部来自上述课程&#xff09; 1.正则表达式&#xff08;regex&#xff09; 可以校验字符串是否满足一定的规则&#xff0c;并用来校验数据格式的合法性。 1.作用 校验字符串是否满足规则在一段文本中查找满足要求的内容 2.内容定义 ps&#xff1a;一…...

拼电商客户管理系统

内容来自&#xff1a;尚硅谷 难度&#xff1a;easy 目 标 l 模拟实现一个基于文本界面的 《 拼电商客户管理系统 》 l 进一步掌握编程技巧和调试技巧&#xff0c;熟悉面向对象编程 l 主要涉及以下知识点&#xff1a; 类结构的使用&#xff1a;属性、方法及构造器 对象的创建与…...

华为:Wireshark的OSPF抓包分析过程

一、OSPF 的5包7状态 5个数据包 1.Hello&#xff1a;发现、建立邻居&#xff08;邻接&#xff09;关系、维持、周期保活&#xff1b;存在全网唯一的RID&#xff0c;使用IP地址表示 2.DBD&#xff1a;本地的数据库的目录&#xff08;摘要&#xff09;&#xff0c;LSDB的目录&…...

Android项目优化同步速度

最近项目需要使用ffmpeg&#xff0c;需要gradle配置引入ffmpeg库&#xff0c;发现原来通过google官方的代码仓&#xff0c;下载太慢了&#xff0c;每秒KB级别的速度。&#xff08;之前下gradle/gradle plugin都不至于这么慢&#xff09;&#xff0c;于是想到配置国内镜像源来提…...

在线教育网站项目第二步 :学习roncoo-education,服务器为ubuntu22.04.05

一、说明 前端技术体系&#xff1a;Vue3 Nuxt3 Vite5 Vue-Router Element-Plus Pinia Axios 后端技术体系&#xff1a;Spring Cloud Alibaba2021 MySQL8 Nacos Seata Mybatis Druid redis 后端系统&#xff1a;roncoo-education&#xff08;核心框架&#xff1a;S…...

STM32-GPIO详解

目录 一&#xff1a;GPIO基本概念 ​编辑 二&#xff1a;GPIO的实际应用 三&#xff1a;功能描述 四&#xff1a;GPIO库函数 五&#xff1a;寄存器 GPIO相关寄存器功能 一&#xff1a;GPIO基本概念 GPIO是英文General Purpose Input/Output的缩写&#xff0c;中文翻译为…...

JavaSec-RCE

简介 RCE(Remote Code Execution)&#xff0c;可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景&#xff1a;Groovy代码注入 Groovy是一种基于JVM的动态语言&#xff0c;语法简洁&#xff0c;支持闭包、动态类型和Java互操作性&#xff0c…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

智慧医疗能源事业线深度画像分析(上)

引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合

在汽车智能化的汹涌浪潮中&#xff0c;车辆不再仅仅是传统的交通工具&#xff0c;而是逐步演变为高度智能的移动终端。这一转变的核心支撑&#xff0c;来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒&#xff08;T-Box&#xff09;方案&#xff1a;NXP S32K146 与…...

如何更改默认 Crontab 编辑器 ?

在 Linux 领域中&#xff0c;crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用&#xff0c;用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益&#xff0c;允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...