c++实现最大公因数和最小公倍数
最大公因数和最小公倍数的介绍
读这篇文章,请你先对最大公因数以及最小公倍数进行了解:
最大公因数(英文名:gcd)
- 定义:最大公因数,也称最大公约数,指两个或多个整数共有约数(因数)中最大的一个。
- 求法
- 列举法:分别列出两个数的所有约数,然后找出它们共有的约数中最大的那个。
- 分解质因数法:
- 辗转相除法:用较大数除以较小数得到商和余数,再用除数和余数反复做除法运算,当余数为 0 时,取当前算式除数为最大公因数。
- 列举法:分别列出两个数的所有约数,然后找出它们共有的约数中最大的那个。
-
最小公倍数(英文名:lcm)
- 几个数共有的倍数叫做这几个数的公倍数,其中除 0 以外最小的一个公倍数,叫做这几个数的最小公倍数。例如,4 的倍数有 4、8、12、16、20、24……,6 的倍数有 6、12、18、24、30……,4 和 6 的公倍数有 12、24……,其中最小的是 12,所以 4 和 6 的最小公倍数是 12,可记作[4,6]:12。
- 求法
- 列举法:分别列出两个数的倍数,然后找出它们共有的倍数中最小的那个。如求 3 和 5 的最小公倍数,3 的倍数有 3、6、9、12、15、18……,5 的倍数有 5、10、15、20……,它们的最小公倍数是 15。
- 分解质因数法:把它们公有的质因数与每个数独有的质因数连乘起来,所得的积就是它们的最小公倍数。例如,12=2×2×3,15=3×5,所以
- 公式法:对于两个数a和b,[a,b]=a*b/(a,b)。例如:
代码:
#include <bits/stdc++.h>
using namespace std;
long long x=0,y=0;
long long pri[100000],cnt=0;
long long gcd(long long a,long long b) {return !b?a:gcd(b,a%b);
}
void gprime(long long num) {cout<<num<<"=";long long divisor=2;bool first=true;while(num>1) {if(num%divisor==0) {if(!first) {cout<<"*";}cout<<divisor;num/=divisor;first=false;} else {divisor++;}}cout<<endl;
}
vector<long long>commonFactors(long long a,long long b) {vector<long long>factors;for(long long i=1; i<=min(a,b); i++) {if(a%i==0&&b%i==0) {factors.push_back(i);}}return factors;
}
long long poww(long long x) {long long f1=x,cnt=0;while(f1) {f1/=10;cnt++;}return cnt;
}
bool Is_Prime(long long x) {for(long long i=2; i<x; i++) {if(x%i==0) {return 0;}}return 1;
}
void Print(long long a,long long b) {cout<<"分解质因数过程:"<<endl;gprime(a);gprime(b);vector<long long>factors=commonFactors(a,b);cout<<a<<"和"<<b<<"的公因数有:";for(long long factor:factors) {cout<<factor<<" ";}cout<<"\n";if(gcd(a,b)==1) {cout<<"互质,没有过程。\n";} else {cout<<"输出短除法过程\n";long long k=poww(a)+poww(b)+5,back;long long fa=a,fb=b;while(gcd(fa,fb)!=1) {for(long long i=2;; i++) {if(Is_Prime(i)&&fa%i==0&&fb%i==0) {cnt++;pri[cnt]=i;cout<<i<<" | "<<fa<<" "<<fb<<"\n";for(long long j=1; j<=poww(i)+1; j++) {cout<<" ";}for(long long j=1; j<=k; j++) {cout<<"-";}fa/=i;fb/=i;cout<<"\n";if(gcd(fa,fb)==1) {back=i;x=fa;y=fb;}break;}}}for(long long i=1; i<=poww(back)+3; i++) {cout<<" ";}cout<<fa<<" "<<fb<<"\n";}if(gcd(a,b)==1) {cout<<"("<<a<<","<<b<<"):"<<gcd(a,b)<<"\n";cout<<"["<<a<<","<<b<<"]:";if(gcd(a,b)==1) {cout<<a<<"*"<<b<<"\n";for(long long i=1; i<=poww(a)+poww(b)+3; i++) {cout<<" ";}cout<<"=";}cout<<a*b/gcd(a,b);return ;}cout<<"("<<a<<","<<b<<"):";long long anss=1;for(long long i=1; i<=cnt; i++) {anss*=pri[i];cout<<pri[i];if(i!=cnt) {cout<<"*";}}cout<<"\n";for(long long i=1; i<=poww(a)+poww(b)+3; i++) {cout<<" ";}cout<<"="<<anss;cout<<"\n["<<a<<","<<b<<"]:";for(long long i=1; i<=cnt; i++) {cout<<pri[i]<<"*";}cout<<x<<"*"<<y<<"\n";for(long long i=1; i<=poww(a)+poww(b)+3; i++) {cout<<" ";}cout<<"="<<anss<<"*"<<x*y<<"\n";for(long long i=1; i<=poww(a)+poww(b)+3; i++) {cout<<" ";}cout<<"="<<gcd(a,b)<<"\n";cout<<"("<<a<<","<<b<<"):"<<gcd(a,b)<<"\n";cout<<"["<<a<<","<<b<<"]:";if(gcd(a,b)==1) {cout<<a<<"*"<<b<<"\n";for(long long i=1; i<=poww(a)+poww(b)+3; i++) {cout<<" ";}cout<<"=";}cout<<a*b/gcd(a,b);
}
int main() {cout<<"输入两个整数:\n";cout<<"本程序用于计算两个数的gcd(最大公因数、最大公约数)以及lcm,其中,(a,b)表示两个数的gcd,[a,b]表示两个数的lcm\n";long long a,b;cin>>a>>b;system("cls");if(gcd(a,b)==1) {cout<<"检测到互质,将自动省略过程\n";Print(a,b);return 0;}if(gcd(a,b)==min(a,b)){cout<<"检测到有倍数关系,这里推荐使用不要过程,请慎重选择\n";}cout<<"输入模式:\n";cout<<"0.只要答案\n";cout<<"其他任何数.要过程\n";long long sr;if(!sr&&gcd(a,b)==min(a,b)){cout<<"("<<a<<","<<b<<"):"<<min(a,b)<<"\n";cout<<"["<<a<<","<<b<<"]:"<<max(a,b)<<"\n";return 0;}cin>>sr;system("cls");if(!sr) {cout<<"("<<a<<","<<b<<"):"<<gcd(a,b)<<"\n";cout<<"["<<a<<","<<b<<"]:";if(gcd(a,b)==1) {cout<<a<<"*"<<b<<"\n";for(long long i=1; i<=poww(a)+poww(b)+3; i++) {cout<<" ";}cout<<"=";}cout<<a*b/gcd(a,b);return 0;}Print(a,b);return 0;
}
相关文章:

c++实现最大公因数和最小公倍数
最大公因数和最小公倍数的介绍 读这篇文章,请你先对最大公因数以及最小公倍数进行了解: 最大公因数(英文名:gcd) 定义:最大公因数,也称最大公约数,指两个或多个整数共有约数&…...

知识库Dify和cherry无法解析影印pdf word解决方案
近期收到大量读者反馈:上传pdf/图文PDF到Dify、Cherry Studio等知识库时,普遍存在格式错乱、图片丢失、表格失效三大痛点。 在试用的几款知识库中除了ragflow具备图片解析的能力外,其他的都只能解析文本。 如果想要解析扫描件,…...

【记录一下学习】Embedding 与向量数据库
一、向量数据库 向量数据库(Vector Database),也叫矢量数据库,主要用来存储和处理向量数据。 在数学中,向量是有大小和方向的量,可以使用带箭头的线段表示,箭头指向即为向量的方向,…...

【第21节】C++设计模式(行为模式)-Chain of Responsibility(责任链)模式
一、问题背景 在 VC/MFC 开发中,消息处理机制是核心部分之一。VC 是基于消息和事件驱动的框架,消息的处理流程通常是通过链式传递的方式进行的。例如,一个 WM_COMMAND 消息的处理流程可能如下: (1)MDI 主窗…...
createrepo centos通过nginx搭建本地源
yum update 先安装一个nginx。 安装Nginx yum install gcc gcc-c pcre pcre-devel openssl openssl-devel libtool zlib zlib-devel -y cd /usr/local/src wget http://nginx.org/download/nginx-1.22.0.tar.gz tar -zxvf nginx-1.22.0.tar.gz cd nginx-1.22.0 ./configu…...
在 Docker 中搭建GBase 8s主备集群环境
本文介绍了如何在同一台机器上使用 Docker 容器搭建GBase 8s主备集群环境。 拉取镜像 拉取GBase 8s的最新镜像 docker pull liaosnet/gbase8s或者docker pull liaosnet/gbase8s:v8.8_3513x25_csdk_x64注:在tag为v8.8_3513x25_csdk_x64及之后的版本中,…...

【MySQL-数据类型】数据类型分类+数值类型+文本、二进制类型+String类型
一、数据类型分类 二、数值类型 1.bit类型 测试环境ubuntu 基本语法: bit[(M)]:位字段类型,M表示每个值的位数,范围从1~64;如果M被忽略,默认为1举例: create table testBit(id i…...

小谈java内存马
基础知识 (代码功底不好,就找ai优化了一下) Java内存马是一种利用Java虚拟机(JVM)动态特性(如类加载机制、反射技术等)在内存中注入恶意代码的攻击手段。它不需要在磁盘上写入文件,…...

简单的二元语言模型bigram实现
内容总结归纳自视频:【珍藏】从头开始用代码构建GPT - 大神Andrej Karpathy 的“神经网络从Zero到Hero 系列”之七_哔哩哔哩_bilibili 项目:https://github.com/karpathy/ng-video-lecture Bigram模型是基于当前Token预测下一个Token的模型。例如&#x…...

【清华大学】实用DeepSeek赋能家庭教育 56页PDF文档完整版
清华大学-56页:实用DeepSeek赋能家庭教育.pdf https://pan.baidu.com/s/1BUweVDeG2M8-t0QaIs3LHQ?pwd1234 提取码: 1234 或 https://pan.quark.cn/s/8a9473493bb0 《实用DeepSeek赋能家庭教育》基于清华大学研究成果,系统阐述了DeepSeek人工智能技…...

黑洞如何阻止光子逃逸
虽然涉及广义相对论,但广义相对论说的是大质量物体对周围空间的影响,而不是说周围空间和空间中的光子之间的关系。也就是说,若讨论光子逃逸问题,则不必限定于大质量的前提,也就是说,若质量周围被扭曲的空间…...

1.4 单元测试与热部署
本次实战实现Spring Boot的单元测试与热部署功能。单元测试方面,通过JUnit和Mockito等工具,结合SpringBootTest注解,可以模拟真实环境对应用组件进行独立测试,验证逻辑正确性,提升代码质量。具体演示了HelloWorld01和H…...
window系统中的start命令详解
start 是 Windows 系统中用于启动新进程或打开新窗口来运行指定程序或命令的命令。以下是对 start 命令参数的详细解释: 基本语法 start ["title"] [/Dpath] [/I] [/MIN] [/MAX] [/SEPARATE | /SHARED] [/LOW | /NORMAL | /HIGH | /REALTIME | /ABOVENO…...

AI编程工具节选
1、文心快码 百度基于文心大模型推出的一款智能编码助手, 官网地址:文心快码(Baidu Comate)更懂你的智能代码助手 2、通义灵码 阿里云出品的一款基于通义大模型的智能编码辅助工具, 官网地址:通义灵码_你的智能编码助手-阿里云 …...

正则表达式,idea,插件anyrule
package lx;import java.util.regex.Pattern;public class lxx {public static void main(String[] args) {//正则表达式//写一个电话号码的正则表达式String regex "1[3-9]\\d{9}";//第一个数字是1,第二个数字是3-9,后面跟着9个数字…...

原生iOS集成react-native (react-native 0.65+)
由于官方文档比较老,很多配置都不能用,集成的时候遇到很多坑,简单的整理一下 时间节点:2021年9月1日 本文主要提供一些配置信息以及错误信息解决方案,具体步骤可以参照官方文档 原版文档:https://reactnative.dev/docs…...

java错题总结
本篇文章用来记录学习javaSE以来的错题 解答:重载要求俩个方法的名字相同,但参数的类型或者个数不同,但是不要求返回类型相同,所以A正确。 重写还需要要求返回类型相同(呈现父子类关系也可以,但是属于特例&…...
【商城实战(10)】解锁商品信息录入与展示的技术密码
【商城实战】专栏重磅来袭!这是一份专为开发者与电商从业者打造的超详细指南。从项目基础搭建,运用 uniapp、Element Plus、SpringBoot 搭建商城框架,到用户、商品、订单等核心模块开发,再到性能优化、安全加固、多端适配…...

2025年主流原型工具测评:墨刀、Axure、Figma、Sketch
2025年主流原型工具测评:墨刀、Axure、Figma、Sketch 要说2025年国内产品经理使用的主流原型设计工具,当然是墨刀、Axure、Figma和Sketch了,但是很多刚入行的产品经理不了解自己适合哪些工具,本文将从核心优势、局限短板、协作能…...
MDM 如何彻底改变医疗设备的远程管理
在现代医疗行业迅速发展的格局中,医院和诊所越来越依赖诸如医疗平板和移动工作站等移动设备。这些设备在提高工作效率和提供卓越的患者护理方面发挥着关键作用。然而,随着它们的广泛使用,也带来了一系列挑战,例如在不同地点确保数…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...

iPhone密码忘记了办?iPhoneUnlocker,iPhone解锁工具Aiseesoft iPhone Unlocker 高级注册版分享
平时用 iPhone 的时候,难免会碰到解锁的麻烦事。比如密码忘了、人脸识别 / 指纹识别突然不灵,或者买了二手 iPhone 却被原来的 iCloud 账号锁住,这时候就需要靠谱的解锁工具来帮忙了。Aiseesoft iPhone Unlocker 就是专门解决这些问题的软件&…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
【git】把本地更改提交远程新分支feature_g
创建并切换新分支 git checkout -b feature_g 添加并提交更改 git add . git commit -m “实现图片上传功能” 推送到远程 git push -u origin feature_g...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)
本文把滑坡位移序列拆开、筛优质因子,再用 CNN-BiLSTM-Attention 来动态预测每个子序列,最后重构出总位移,预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵(S…...

dify打造数据可视化图表
一、概述 在日常工作和学习中,我们经常需要和数据打交道。无论是分析报告、项目展示,还是简单的数据洞察,一个清晰直观的图表,往往能胜过千言万语。 一款能让数据可视化变得超级简单的 MCP Server,由蚂蚁集团 AntV 团队…...
基于matlab策略迭代和值迭代法的动态规划
经典的基于策略迭代和值迭代法的动态规划matlab代码,实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...