8. 机器人模型训练与评估(具身智能机器人套件)
1. 训练
使用python lerobot/scripts/train.py可以进行机器人控制模型训练,一般需要几个小时,可以在outputs/train/act_lekiwi_test/checkpoints查看锚点数据,下面为一组示例参数:
python lerobot/scripts/train.py \--dataset.repo_id=${HF_USER}/lekiwi_test \--policy.type=act \--output_dir=outputs/train/act_lekiwi_test \--job_name=act_lekiwi_test \--device=cuda \--wandb.enable=true
- 数据集参数:–dataset.repo_id=${HF_USER}/lekiwi_test
- 机器人配置:policy.type=act表示从 configuration_act.py 加载配置,数据集中记录了机器人的电机状态、电机动作和摄像头的数量。
- device=cuda表示在 Nvidia GPU 上训练,使用device=mps来在 Apple 芯片上训练。
- wandb.enable=true表示使用wandb.ai来可视化训练图,使用之前要使用wandb login先登录,这是官网地址。
2. 评估训练模型
评估跟录制数据集是同一个方法(lerobot/scripts/control_robot.py),不过增加了锚点作为输入,下面命令可以用来录制10个评估数据集。
python lerobot/scripts/control_robot.py \--robot.type=lekiwi \--control.type=record \--control.fps=30 \--control.single_task="找到红色块,并捡起来" \--control.repo_id=${HF_USER}/eval_act_lekiwi_test \--control.tags='["tutorial"]' \--control.warmup_time_s=5 \--control.episode_time_s=30 \--control.reset_time_s=30 \--control.num_episodes=10 \--control.push_to_hub=true \--control.policy.path=outputs/train/act_lekiwi_test/checkpoints/last/pretrained_model
它与之前用于录制训练数据集的命令很像,有两点不同变化:
- 增加参数 control.policy.path 表示策略锚点的路径(–outputs/train/eval_act_lekiwi_test/checkpoints/last/pretrained_model)。如果您将模型锚点上传到hf,还可以使用模型库(${HF_USER}/act_lekiwi_test )。
- 数据集的名称以eval开头,表示正在进行推理(${HF_USER}/eval_act_lekiwi_test )。
具身开源套件部分课程如下,欢迎联系合作采购(全套开源)
- 树莓派上配置机器人环境
- 电脑主机上配置机器人环境
- 机器人硬件组装
- 基于硬件更新软件配置
- 机器人标定
- 机器人远程遥控
- 机器人数据集记录
- 机器人模型训练与评估
相关文章:
8. 机器人模型训练与评估(具身智能机器人套件)
1. 训练 使用python lerobot/scripts/train.py可以进行机器人控制模型训练,一般需要几个小时,可以在outputs/train/act_lekiwi_test/checkpoints查看锚点数据,下面为一组示例参数: python lerobot/scripts/train.py \--dataset.…...

计算机网络-服务器模型
一.服务器模型 1.支持多客户端访问 //单循环服务器 socket bind listen while(1) { accept while(1) { recv/send } } close 注:该模式remvform为阻塞态,服务器将等待接收数据 2..支持多客户端同时访问 (并发能力) socket…...

DeepSeek大模型 —— 全维度技术解析
DeepSeek大模型 —— 全维度技术解析 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,可以分享一下给大家。点击跳转到网站。 https://www.captainbed.cn/ccc 文章目录 DeepSeek大模型 —— 全维度技术解析一、模型架构全景解析1…...

OSPF网络类型:NBMA与P2MP
一、NBMA网络 NBMA网络的特点 连接方式: 支持多台设备连接到同一个网络段,但网络本身不支持广播或组播。典型例子:帧中继、ATM。 DR/BDR选举: 由于网络不支持广播,OSPF需要手动配置邻居。 仍然会选举DR(…...

大数定律详解
前言 本文隶属于专栏《机器学习数学通关指南》,该专栏为笔者原创,引用请注明来源,不足和错误之处请在评论区帮忙指出,谢谢! 本专栏目录结构和参考文献请见《机器学习数学通关指南》 正文 🌟 一、大数定律的…...
2025生物科技革命:AI驱动的基因编辑与合成生物学新纪元
一、基因编辑技术的精准化突破 第三代基因编辑工具CRISPR-Cas12f的研发成功,将编辑精度提升至0.1碱基对级别。中国科学院团队利用该技术在灵长类动物模型中修复遗传性视网膜病变基因,治愈率达到92%。对比传统CRISPR-Cas9技术,新型编辑器脱靶…...

百度SEO关键词布局从堆砌到场景化的转型指南
百度SEO关键词布局:从“堆砌”到“场景化”的转型指南 引言 在搜索引擎优化(SEO)领域,关键词布局一直是核心策略之一。然而,随着搜索引擎算法的不断升级和用户需求的多样化,传统的“关键词堆砌”策略已经…...
macOS常用网络管理配置命令
目录 **1. ifconfig:查看和配置网络接口****2. networksetup:管理系统网络配置****3. ping:测试网络连通性****4. traceroute:跟踪数据包路径****5. nslookup/dig:DNS 查询****6. netstat:查看网络连接和统…...
Selenium 中 ActionChains 支持的鼠标和键盘操作设置及最佳实践
Selenium 中 ActionChains 支持的鼠标和键盘操作设置及最佳实践 一、引言 在使用 Selenium 进行自动化测试时,ActionChains 类提供了强大的功能,用于模拟鼠标和键盘的各种操作。通过 ActionChains,可以实现复杂的用户交互,如鼠标…...

【五.LangChain技术与应用】【31.LangChain ReAct Agent:反应式智能代理的实现】
一、ReAct Agent是啥?为什么说它比「普通AI」聪明? 想象一下,你让ChatGPT查快递物流,它可能直接编个假单号糊弄你。但换成ReAct Agent,它会先推理(Reasoning)需要调用哪个接口,再行动(Action)查询真实数据——这就是ReAct的核心:让AI学会「动脑子」再动手。 举个真…...

【HarmonyOS Next之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(七) -> JS动画(二)
目录 1 -> 动画动效 1.1 -> 创建动画对象 1.2 -> 添加动画事件和调用接口 2 -> 动画帧 2.1 -> 请求动画帧 2.2 -> 取消动画帧 1 -> 动画动效 通过设置插值器来实现动画效果。 说明 从API Version 6 开始支持。 1.1 -> 创建动画对象 通过cre…...
SpaCy处理NLP的详细工作原理及工作原理框图
spaCy处理NLP的详细工作原理及工作原理框图 spaCy处理NLP的详细工作原理 spaCy是一个基于Python的开源自然语言处理(NLP)库,它提供了一系列高效且易用的工具,用于执行各种NLP任务,如文本预处理、文本解析、命名实体识…...

Mysql中的常用函数
1、datediff(date1,date2) date1减去date2,返回两个日期之间的天数。 SELECT DATEDIFF(2008-11-30,2008-11-29) AS DiffDate -- 返回1 SELECT DATEDIFF(2008-11-29,2008-11-30) AS DiffDate -- 返回-1 2、char_length(s) 返回字符串 s 的字符数 3、round(x,d)…...
Linux下find命令的使用方法详解
文章目录 **一、基本语法****二、常用搜索条件****1. 按名称搜索****2. 按类型搜索****3. 按时间搜索****4. 按大小搜索****5. 按权限/所有者搜索** **三、组合条件(逻辑运算符)****四、执行操作****1. 直接输出(默认)****2. 删除…...
Day(19)--IO流(三)
文件加密 ps:^异或: 两边相同就是false 两边不同就是true 如果比较的是数字,那就会把它转换成为二进制,从右自左依次比较 总结:如果一个数字被异或两次,结果还是原来的数字 缓冲流 字节缓冲流 BufferedInputStream------字节缓冲输入流 BufferedOutputStream----字节…...
数据类型——long long
在C语言中,long long 类型是一种有符号的64位整数,其取值范围由二进制补码表示法决定。以下是具体数值及解释: 1. long long 的最大值 最大值(正数):9223372036854775807 计算方式:2^63 - 1 这是…...

网络安全通信架构图
🍅 点击文末小卡片 ,免费获取网络安全全套资料,资料在手,涨薪更快 在安全通信里面我经常听到的2个东西就是SSL和TLS,这2个有什么区别呢?以及HTTPS是怎么通信的?包括对称加密、非对称加密、摘要、…...

AMD(xilinx) FPGA书籍推荐
理论到实践,五年磨一剑 以应用为主,书中全部例程均来自工程实践;目的在于培养FPGA工程师良好的代码编写习惯,掌握vivado常用高级技巧。本书详细讲解了: (0)vivado操作基础从工程建立到bit/mcs文…...

考前冲刺,消防设施操作员考试最后一击
考前冲刺,消防设施操作员考试最后一击 考前冲刺阶段至关重要。首先要回归教材,快速浏览重点知识点,强化记忆。同时,对之前做过的错题进行集中复习,分析错误原因,避免在考试中再次犯错。进行全真模拟考试&a…...

【GoTeams】-3:构建api、重构错误码
本文目录 1. 构建api梳理调用关系api包的作用路由梳理注册Register代码语法 2. 重构错误码 1. 构建api 首先复制project-user,改名为project-api,放在总的路径下,然后在工作区中进行导入。 运行命令go work use .\project-api\新建工作区之…...
三维GIS开发cesium智慧地铁教程(5)Cesium相机控制
一、环境搭建 <script src"../cesium1.99/Build/Cesium/Cesium.js"></script> <link rel"stylesheet" href"../cesium1.99/Build/Cesium/Widgets/widgets.css"> 关键配置点: 路径验证:确保相对路径.…...

YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践
6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

OPENCV形态学基础之二腐蚀
一.腐蚀的原理 (图1) 数学表达式:dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一,腐蚀跟膨胀属于反向操作,膨胀是把图像图像变大,而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...

接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
Vue 模板语句的数据来源
🧩 Vue 模板语句的数据来源:全方位解析 Vue 模板(<template> 部分)中的表达式、指令绑定(如 v-bind, v-on)和插值({{ }})都在一个特定的作用域内求值。这个作用域由当前 组件…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...

医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...